Valoración cuantitativa de CaSO₄ total en el yeso crudo o calcinado mediante la singenita

E. EIPELTAUER, K. MOLDAN y H. PODEST Zement-Kalk-Gips, núm. 4, abril 1979

Según los autores, el conocimiento de la cantidad total de SO₄Ca, en los materiales de yeso, es de gran importancia en su fabricación; el contenido de los silos no siempre es homogéneo y se hace necesario conocer con rapidez su composición. Los métodos tradicionales utilizables para el análisis de las fases requieren varios días si, además, se requiere la separación de anhidrita y semihidrato.

Los autores han estudiado un método, que requiere pocas horas, para conocer cuantitativamente el sulfato cálcico total. En este primer estudio no abordan la separación de fases.

PRINCIPIOS DEL METODO

El análisis se basa en la transformación de todo el sulfato cálcico presente —y sólo de él— en singenita (K_2SO_4 . $CaSO_4$. H_2O) por la acción de una disolución acuosa de sulfato potásico. El resultado se obtiene por dos vías:

- Formación cuantitativa de singenita.
- Determinación del agua de cristalización de la singenita formada.

Para ello es necesario:

- 1) Conversión completa del SO₄Ca, en singenita, durante un plazo corto de tiempo.
- 2) Desplazamiento total del K₂SO₄ sobrante.
- 3) Valoración rápida del CaSO₄ que hubiera pasado al líquido filtrado.

MODO DE PROCEDER

Se tritura el material yesífero hasta que todo pase por el tamiz de 0,04 mm homogeneizando a fondo el polvo obtenido. Se pesan dos cantidades de 2 g, aproximadamente; en una de ellas se determina la pérdida por calcinación a 380°C. Se designa por E la cantidad de material pesada y por WL la pérdida de peso.

En un vaso se colocan 250 ml de agua destilada, 25 g de K₂SO₄ (R.A.) y un agitador mag-

nético; se tapa con un vidrio de reloj y se calienta agitando hasta que se inicie la ebullición; se deja de calentar y, sin interrumpir la agitación, se agrega la cantidad E pesada. Si algo queda en el vídrio, donde se pesó, se puede arrastrar con algunos ml de disolución, fría y saturada de K_2SO_4 . La formación de singenita se completa en una hora, y el conjunto se ha enfriado a $40^{\circ}\mathrm{C}$.

Se filtra la singenita formada a través de un crisol filtrante de vidrio G2. Se arrastra el residuo, que quedase en el vaso, con algunos ml de disolución saturada y fría de K_2SO_4 . La filtración y el lavado se facilitan manteniendo fijo el agitador magnético mediante otro agitador adosado al exterior del vaso. En el líquido filtrado se determina el sulfato cálcico complexométricamente en g y en %.

El contenido del crisol se lava dos veces con 15 ml de alcohol metílico cada vez y, seguidamente, con 5 ml de éter etílico. A continuación se aplica al crisol una lámpara de infrarrojos que secan el contenido a 160° C y se pesa. Valor A_1 (g).

El primer valor del CaSO₄ se obtiene mediante el siguiente cálculo:

$$\frac{A_1 - E + WL + CaSO_4 \text{ disuelto}}{E} \times 70.8 = \% \text{ ponderal de CaSO}_4$$

A continuación se calienta el crisol y su contenido a 380°C, hasta peso constante, y se le enfría en desecador sobre P_2O_5 reciente; se pesa ya frío. Valor A_2 (g).

De la pérdida de peso, por eliminación del agua de hidratación de la singenita formada, se calcula el CaSO₂ en % gravimétrico:

$$\frac{A_1 - A_2}{E} \times 755,7 = \% \text{ de CaSO}_4 \text{ ponderal}$$

El valor del CaSO₄ obtenido complexométricamente se debe añadir a este valor.

Los autores exponen detalladamente los estudios realizados para fijar las condiciones de formación y deshidratación de la singenita mediante análisis térmico diferencial y examen con rayos X.

En el núm. 6 de "Zement-Kalk-Gips", correspondiente a junio de 1979, se encuentra la versión inglesa de este tan interesante trabajo.