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ABSTRACT: The aim of this research was to study the carbonation resistance of a blast furnace slag concrete 
(80% GBFS/20%OPC), with and without alkaline activation, and its influence on the corrosion of structural 
reinforcement. An OPC-based concrete produced under the same specifications was used as a reference mate-
rial. To do this, the material was subjected to an accelerated carbonation process under controlled conditions 
(65% relative humidity, 1% CO2, 25°C). The half-cell potential (Ecorr), linear polarization resistance (LPR) 
tests showed that both concretes based on GBFS led to depassivation of the reinforcing steel at approximately 
99 days, which is the time required for full carbonation of the evaluated concretes.
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RESUMEN: Carbonatación de un hormigón hibrido con alto contenido de escoria siderurgica de alto horno y 
su impacto en la corrosión del acero estructural. El objetivo de esta investigación fue estudiar la resistencia a la 
carbonatación de un hormigón a base de escoria granulada de alto horno (80% GBFS/20%OPC), con y sin 
activación alcalina, y su influencia sobre la corrosión del acero estructural. Un hormigón basado en cemento 
portland producido con las mismas especificaciones fue usado como material de referencia. Para ello, el mate-
rial fue sometido a un proceso de carbonatación acelerada bajo condiciones controladas (Humedad Relativa 
65 %, 1% CO2, 25 °C). Los ensayos de potencial de media celda (Ecorr) y Resistencia a la polarización lineal 
(LPR) mostraron que los aceros estructurales aproximadamente a los 99 días alcanzan la despasivación en los 
hormigones basados en escoria, coincide este tiempo con el requerido para la completa carbonatación de los 
hormigones evaluados.

PALABRAS CLAVE: Carbonatación; Escoria granulada de alto horno; Hormigón Adicionado; Concreto activado 
alcalinamente; Corrosión
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1. INTRODUCTION

Most of the deterioration processes of reinforced 
concrete are related to carbonation and the presence 
of chlorides that generate corrosion processes in the 
reinforcing steel. Specifically, concrete carbonation 
is a natural phenomenon that consists of the dif-
fusion and dissolution of CO2 in the pores of the 
concrete and the subsequent reaction or attack on 
portlandite (Ca(OH)2) and tobermorite (C-S-H), 
which generates calcium carbonate. This reaction 
causes a decreased alkalinity (pH) in pore solution, 
which results in a loss of passivation in the steel, 
leading to the initiation and subsequent spread of 
corrosion (1-6).

To produce cements that are more environmen-
tally friendly and durable and have better mechanical 
performance, studies of cements with added supple-
mentary materials, such as fly ash, blast furnace 
slag, silica fumes, metakaolin (MK) and spent fluid 
catalytic cracking, have been conducted. However, it 
has been concluded that ordinary Portland cement 
(OPC) is more resistant to carbonation than cements 
with high amounts of these materials (4, 5, 7-10).

Alkali-activated, geopolymer and hybrid cements 
are other environmentally friendly cements that 
include between 70 and 100% blast furnace slag 
(GBFS) or fly ash as a cementitious material. These 
types of materials generally produce structures 
that are less permeable and have higher mechani-
cal strengths; however, several studies (7, 11-15) 
have reported that Alkali-Activated Slag Concretes 
are more susceptible to carbonation, which they 
attribute to the small or non-existent amount of 
Ca(OH)2 available for neutralization by the CO2 dif-
fused throughout the structure, and consequently, 
the attack on the C-S-H progresses faster and results 
in a greater loss of strength (7, 13).

Borges et al. (9) cured samples containing GBFS 
at 60°C and obtained denser structures (with more 
C-S-H gel) in addition to a decrease in the CO2 dif-
fusion in the matrix, which increased the durability; 
however, the authors mentioned in their study that 
the presence of CO2 in alkali-activated mixtures also 
affects C-S-H by causing the degradation of gels 
by decalcification. Bernal et al. (16) confirmed  the 
increased susceptibility of alkali-activated slag con-
cretes with respect to concretes produced only with 
Portland cement; however, when comparing concretes 
containing more cementitious material (300, 400 and 
500 kg/m3), they observed that this susceptibility 

decreases, which can be attributed to lower perme-
ability or the direct relationship between the mechan-
ical strength and the probability of carbonation, 
which has also been mentioned by  other research-
ers (1). It should be noted that several factors could 
influence the degradation process in alkali- activated 
cements. Bernal et al. (17) assessed the impact of the 
activator solution modulus (Ms) and the incorpo-
ration of  MK on the carbonation resistance of an 
alkali-activated blast furnace slag and found that sus-
ceptibility to carbonation is higher when the Ms is 
low. However, this behaviour is reversed when MK 
is added due to the formation of secondary silico- 
aluminate phases. By studying how the type of acti-
vator influences the carbonation resistance, Puertas 
et al. (15) found that the resistance to carbonation 
depends strongly on the type of activator used; there-
fore, by comparing sodium hydroxide with sodium 
silicate or waterglass (Wg) they showed that the sam-
ples activated with Wg are more susceptible.

This study determined the carbonation resistance 
of a blast furnace slag concrete (80% GBFS/20% 
OPC) activated with a mixture of sodium silicate 
and sodium hydroxide and assesses its influence on 
the corrosion of the structural reinforcement. The 
results were compared with those obtained in the 
same blended concrete without alkaline activation. 
An OPC-based concrete produced under the same 
specifications was used as a reference material.

2. MATERIALS AND METHODS

This study used granulated blast furnace slag 
(GBFS) and a Portland cement (OPC) from 
Colombia (cement type GU according to ASTM 
C1157) as cementitious materials. Their chemi-
cal compositions and physical characteristics are 
shown in Table 1. It is important to note that the 
use of limestone added cement causes high loss on 
ignition (LOI). Diffractograms of the raw materials 
are shown in Figure 1. Three types of concrete are 
prepared, a concrete control based on OPC 100%, 
a reference material 80%GBFS+20%OPC named 
CE, and an alkali-activated concrete containing the 
same proportion of blast furnace slag named HB. 
A mixture of sodium hydroxide and sodium sili-
cate was used as activator (Ms: 1; %Na2O: 5% with 
respect of GBFS). Table 2 shows the proportions of 
the materials used in this study.

Cylindrical concrete specimens (76 mm in 
diameter and 152 mm in height) with and without 

Table 1. Chemical compositions and particle size of the cementitious materials

(%) SiO2 CaO Al2O3 Fe2O3 MgO SO3 LOI Particle size (µm)
OPC 19.13 57.7 4.42 4.32 1.6 2.32 9.78 21.48

GBFS 31.99 46.86 14.54 1.12 1.05 0.82 1.8 21.38
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reinforcement were made; reinforcing steel (6.35 
mm of  diameter) was placed in the centre of  a 
cylinder with an exposed area of  1000 mm2 inside 
the concrete (Figure 2). As shown in Table 2, the 
slump is held between 50 and 100 mm to promote 
medium or plastic consistency in the resulting con-
crete; this value is ideal for concrete placement by 
hand and for reinforced sections. The HB samples 
are cured for 28 days in a humidity chamber, and 
the reference (CE) and control (OPC) concrete 
samples are cured in water; subsequently, both are 
subjected to accelerated carbonation in a chamber 
under controlled conditions (65% relative humidity 
(RH); 1% CO2, 25°C). Before being placed in the 
carbonation chamber, the specimens were precon-
ditioned by drying for 6 hours at room tempera-
ture (25°C, 80%H.R.), and a coat of  impermeable 
paint was applied to the top and bottom surfaces 
of  the cylinders. This treatment allows to lead the 
entrance of  CO2. For the unreinforced concretes, 

the carbonation front is located by making cross 
cuts every 8 days for evaluation with phenolphtha-
lein. For the steel reinforced concretes, the half-cell 
potential (Ecorr) according to ASTM C876 stan-
dard (18) and the linear polarization resistance 
(LPR) following the procedure of  the ASTM G59 
(19) standard were measured every 30 days. These 
electrochemical tests were performed using an 
Autolab PGSTAT128N Potenciostat/Galvanostat 
instrument (Figure 2). Ag/AgCl was used as the 
reference electrode and stainless steel as counter-
electrode. The calculation of  the corrosion current 
density was carried out by applying the Stern-
Geary equation. These electrochemical measure-
ments were also carried out on the same concretes 
immersed in water, environment used as a compari-
son to the accelerated carbonation environment.

Pastes with the same proportions of cementitious 
material and activator were prepared to monitor 
the progress of the hydration reactions using X-ray 
diffraction.

Table 2. Mixture design and properties of the fresh concretes

Design and Properties
REFERENCE 

(CE)
HYBRID 

(HB) OPC

Cementitious material (kg/m3) 400 400 400

Blast furnace slag (kg/m3) 320 295.31 -

Portland cement (kg/m3) 80 73.81 -

Sodium silicate (kg/m3) - 44.26 -

Sodium hydroxide (kg/m3) - 12.19 -

Fine aggregate: sand (kg/m3) 972.7 989.9 972.7

Coarse aggregate: crushed 
gravel (kg/m3)

704.4 716.9 704.4

Water (kg/m3) 192 180 192

Liquid/solid ratio 0.48 0.45 0.48

Slump (mm) 70

Figure 1. X-ray diffractograms of the raw materials used: 
Y: gypsum [PDF:00-021-0816], Q: quartz [PDF:00-033-1161], 

C: calcite [PDF:00-047-1743], A: akermanite [PDF:01-087-
0050], G: gehlenite [PDF:00-035-0755], O: olivine [PDF:01-087-

2039], C3S [PDF:00-016-0406], C2S [PDF:00-033-0302].
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Figure 2. Setup for the electrochemical measurements of 
reinforced concretes exposed to carbonation.
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3. RESULTS AND DISCUSSION

3.1. Hydration process and physical-mechanical 
properties

Figure 3 shows diffractograms of the HB and 
CE (OPC/GBFS 20%/80%) pastes after 28 days of 
curing. The diffractograms showed the presence of 
some crystalline components of the raw materials 
(Figure 1) and of the reaction products. The pres-
ence of quartz, calcite, aragonite and C-S-H can be 
observed in both types of concrete, and in particu-
lar, hydrated gehlenite (C2ASH8/C4AH13) is found 
in the hybrid samples; this is a hydration product 
characteristic of slags that are alkali activated using 
sodium silicate and sodium hydroxide (20) and is 
associated with the absence of portlandite in these 
samples (21). Some researchers have noted that due 
to the reduced amounts of OPC in the mixtures 
(20%), it is possible for portlandite  (Ca(OH)2) not 
to be found (22, 23); conversely, other studies have 
shown that it is possible for a small amount to par-
ticipate in the reaction with the GBFS or the sili-
cate present as an activator to generate more C-S-H 
(24, 25).

Table 3 shows the physical-mechanical properties 
of the CE and HB samples evaluated and compares 
them to those of a 100% OPC concrete. It is observed 
that the compressive strength of the CE after 28 days 
of curing is approximately 50% less than that of the 
HB and 100% OPC concretes. This behaviour is in 
agreement with the results of different studies that 
have shown that the strengths of concretes with high 

contents (30% - 90%) of blast furnace slag replac-
ing Portland cement after 28 days of curing are 
lower than those of the 100% OPC control samples, 
which is due to the relatively low reaction rate of the 
slag (26-35). Therefore, it is concluded that gradu-
ally increasing the amount of slag in the concrete 
causes a reduction on the compressive strength at 
early ages. Regarding absorption and porosity, note 
that the differences in the total absorption and the 
porosity are directly related to the reported strength. 
However, the capillary absorption coefficient (K), 
resistance to water penetration (m) and effective 
porosity indicate that both the CE and the alkali-
activated HB are less permeable than the 100% OPC 
concrete; this is attributable to greater refinement in 
the pore structure, behaviour that coincides with the 
research carried out by Rodríguez et al. (36), these 
results indicate the presence of a more dense and 
resistant structure.

3.2. Carbonation front

Figure 4 shows the progress of the carbonation 
front of the HB and CE samples, which is com-
pared with the behaviour of a 100% OPC concrete 
produced with the same mixture proportions. The 
samples were subjected to accelerated carbonation 
conditions (65% RH, 1% CO2 and 25°C) after 28 
days of curing.

In general, all the concretes show gradual car-
bonation (Figure 5 through Figure 7); however, the 
HB and CE samples became completely carbonated 
in a shorter period (99 days) compared to the 100% 
OPC concrete, which showed a carbonation depth 
of  13 mm at same age of  exposure. Therefore, the 
high susceptibility to accelerated carbonation of 
the HB and CE concretes has been demonstrated, 
and it should be noted that although the HB sam-
ple generally has a greater compressive strength 
and lower permeability than the 100% OPC and 
CE concretes, its susceptibility to carbonation is 
higher.

Table 3. Physical-mechanical properties prior to 
carbonation testing (28 days of curing)

Properties CE HB
100% 
OPC

Compressive strength (MPa) 16.30 34.04 30.93

Water Absorption

 % Permeable pores 17.25 14.41 15.98

 % Total absorption 7.05 6.34 7.17

Capillary suction

 Absorption coefficient (K, kg/m2.seg1/2) 0.02 0.01 0.03

 Effective porosity (%) 9.65 6.99 12.70

  Resistance to water penetration 
(m*107, s/m2)

2.63 2.51 1.90

Figure 3. Diffractograms of the hybrid (HB) and reference 
(CE) cement pastes. Hydration products monitored after 28 
days of curing: A: aragonite; C: calcite [PDF:00-047-1743]; 

H: hydrotalcite [PDF:01-089-0460]; GeH: hydrated gehlenite 
(C2ASH8/C4AH13) [PDF:01-089-1580]; Q: quartz [PDF:00-033-
1161]; D: diopside; O: olivine [PDF:01-087-2039], C3S [PDF:00-
016-0406], C2S [PDF:00-033-0302], C-S-H [PDF:01-074-2596].
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Some authors (7, 9, 37, 38) have suggested that 
the greater susceptibility of the carbonation process 
is proportional to the amount of blast furnace slag 
and independent of the decreased porosity caused by 
the added material, especially in concretes containing 
70% or more of GBFS, although their compressive 

strength remains high. This greater susceptibility is 
also associated with the decalcification of the C-S-H 
gel (11, 15, 39), which affects the mechanical prop-
erties, as shown in Table 4, in which the mechanical 
strengths of the concretes are compared before and 
after the samples are subjected to the accelerated car-
bonation process; it can be seen that after exposure 
to CO2 for 99 days, compared to those samples cured 
in the absence of CO2, the compressive strength of 
these samples decreases drastically. The residual 
strength of CE and HB, after 99 days of accelerated 
exposure to CO2, was similar (3.35 and 3.60 MPa, 
respectively). However, it is to be noted that due 
to the higher initial resistance of HB (34.04 MPa), 
which is approximately two times higher than the cor-
responding from CE to 28 days of normal curing, the 
loss of compressive strength calculated was superior 
(89%). On the contrary, in the case of OPC concrete, 
the compressive strength to the same age of exposure 
presented an increase, which is related to the lower 
carbonation depth (Figure 4). Similar behaviours 
have been found by Backharev et al., Bernal et al. (17, 
40, 41), who noted that concretes containing alkali-
activated GBFS exhibited higher rates of carbon-
ation even though they are more alkaline than 100% 
OPC concretes and blended concretes with pozzolan. 
The higher alkalinity of alkali-activated concretes 
is due to the activators, in this case, to a mixture of 
sodium silicate and sodium hydroxide (with a pH of 
greater than 13.5), whereas the pH of the OPC paste 
is between 12.6 and 13.5 (11, 42). Some authors (16, 
37, 43, 44) have noted that the adverse behaviour 
of the alkaline-activated concretes towards carbon-
ation can be controlled and reduced by using a larger 
proportion of cementitious material, a lower water/
cementitious material ratio and a higher Ms.

Due to the large number of factors that affect 
the results, it is difficult to establish a correlation 
between the exposure times under accelerated and 
natural conditions. Several authors (45–48) have 
suggested that there is a relationship between natu-
ral exposure (KN) and exposure to accelerated con-
ditions (Kc) that can be expressed using [1]

 
K
K

C
N

,C

N

=  [1]

where C represents the CO2 concentration of the 
accelerated environment and N represents the CO2 

Table 4. Compressive strength before and after the 
concretes were placed in the accelerated carbonation chamber

Concrete (MPa) 28 days 90 days 99 days in CO2

CE 16.29 20.72 3.35

HB 34.04 36.02 3.60

100% OPC 30.93 40.24 49.96

Figure 4. Carbonation depth versus exposure time.
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concentration of the natural environment; for the 
purpose of analysing this condition, an environ-
ment with a CO2 concentration of 0.1% or [N=0.1] 
was assumed, and the values of KN were calculated 
(Table 5). In this case, C corresponds to the value 
used in the accelerated environment (1% CO2) and 
KC to the value obtained during the test. It should 
be noted that these expressions have been developed 
for Portland cement concrete.

Using the values of KN found for each of the 
concretes evaluated, the time required for complete 
carbonation (tC) can be estimated in an environment 
containing 0.1% CO2, as shown in Table 5. Note 
that the time required for the 100% OPC concrete 
is greater than 50 years, which is the estimated time 
required for a medium-strength Portland cement 
concrete, whereas the HB and CE concretes require 
only 10 years; this demonstrates the increased sus-
ceptibility to carbonation of Portland concretes with 
high percentages of GBFS and hybrid alkali-acti-
vated concretes based on 80% GBFS in urban and 
industrial environments containing CO2 emissions 
at concentrations of 0.1%. However, as explained by 
Duffó et al. (49), for a good concrete, the values of 

K are between 0.25 and 1; based on this and as Table 
5 shows, the HB and the concrete CE (80% slag-20% 
cement) can be considered also good, as is the 100% 
OPC concrete subjected to natural carbonation.

3.3. Corrosion susceptibility of the carbonated 
material

Figure 8 shows the half-cell potential (Ecorr) over 
time for the steel embedded in the HB and CE con-
cretes in an accelerated carbonation environment 
(65% RH, 1% CO2 and 25°C). In general, both con-
cretes exhibit similar behaviour. In accordance with 
ASTM C876 [18] and (50), during the first 95 days 
of exposure, Ecorr is in a zone in which corrosion 
may or may not occur (between -0.10 and -0.25 V vs. 
Ag/AgCl). After 120 days of exposure, the  values 
of Ecorr for the concretes decrease drastically until 
they reach the level at which the probability of cor-
rosion is 90%. These results coincide with those 
obtained in the carbonation front test, which showed 
complete carbonation of the concretes at the same 
exposure age (Figures 4 through Figure 7). After 
this age, Ecorr values of both concretes, hybrid and 
reference, show a variable behaviour, with potential 
 values between -0.25 and -0.60 V vs. Ag / AgCl until 
approximately 700 days in an accelerated carbon-
ation chamber, thus remaining in the zone of 90% 
probability that corrosion will occur. It is observed, 
from the 425 days of exposure in samples of rein-
forced hybrid concrete submerged in water, as well as 
in those exposed to accelerated carbonation, a simi-
lar behaviour regarding the corrosion potential.

Table 5. Carbonation coefficients of the concretes 
evaluated (mm/day1/2) [N=0.1]

Concrete KN tc (Years)

CE 0.6629 9.05

HB 0.6212 10.31

100% OPC 0.2607 58.52

Figure 8. Comparison of the corrosion potentials of the concretes evaluated.
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Figure 9 shows the values of the corrosion cur-
rent density (icorr) of the steel embedded in the 
concretes evaluated, calculated from measurements 
of LPR using the Stern-Geary equation. All the 
concretes showed high icorr above 2 µA/cm2. These 
results are strongly correlated with those obtained in 
the corrosion potential test (Figure 8), in which both 
concretes are likely to become corroded. The steels 
extracted from the different concretes to confirm 
that the corrosion has occurred (Figure 10). The 
results of the electrochemical tests are associated 
with the results of Aperador et al. (51,52). These 
authors evaluated alkali-activated concretes con-
taining GBFS (100%) and attributed the high car-
bonation rate, among other factors, to micro-cracks 

produced by the contraction of these materials 
 during the drying process. These micro-cracks facil-
itate the entry of CO2 into the structure; this  has 
also been explained by other researchers (14,  39). 
Additionally, Bernal et al. (53) noted that the 
advancement of the carbonation process contrib-
utes to increases in the porosity, and consequently, 
this phenomenon contributes to the acceleration of 
the corrosion process. Alcaide et al. (54) studied the 
effect of carbon fibre on alkali-activated slag mor-
tars reinforcing steel corrosion and showed that the 
maximum corrosion density reached in the carbon-
ation process is 5.7 µA/cm2, after around 50 days 
this value flattened to 2.5 µA/cm2, this is because to 
the interaction between the CO2 and C-S-H gel and 

Figure 9. Corrosion current density of the concretes evaluated.
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additionally to the presence of carbonaceous mate-
rials which modify the reaction kinetics. However, it 
is possible to increase the useful life of these alkali-
activated reinforced concretes and to decrease their 
susceptibility to carbonation by appropriately con-
trolling the design of the concrete, especially the 
proportion of cementitious material and the type 
and proportion of the alkaline activator (55–57).

4. CONCLUSIONS

This study evaluated the susceptibility to car-
bonation of a blast furnace slag concrete (80% 
GBFS/20%OPC), with and without alkaline activa-
tion, named HB and CE respectively. The concretes 
were exposed to accelerated carbonation conditions 
(65% RH, 1% CO2 and 25°C) and the decrease in 
compressive strength and the carbonation front were 
measured. A concrete based on OPC was used as ref-
erence. The susceptibility of these concretes to corro-
sion was also assessed using the corrosion potential 
and the linear polarization technique. From the 
results obtained, the following is concluded:

• HB and CE concretes showed a greater suscepti-
bility to accelerated carbonation than Portland 
cement concrete.

• Under accelerated carbonation conditions, CE 
(80%GBFS/20%OPC) lost up to 79% of its ini-
tial strength, and HB lost 89% of its initial stren-
gth at 99 days of exposition. It is to be pointed 
out that the initial compressive strength of HB 
is twice as high as that of CE, but the strength 
after the exposition were similar.

• Complete carbonation (100%) of both concretes 
(CE y HB) was observed at 99 days of CO2 expo-
sure. However, the OPC concrete barely reached 
35,3% of carbonation depth at same age.

• When the actual time for complete carbonation 
of the evaluated concretes under aggressive envi-
ronmental conditions (0.1% CO2) was estimated, 
it was found that the blended Portland concrete 
(80%GBFS/20%OPC) required 9 years, the HB 
(alkali-activated concrete 80%GBFS/20%OPC) 
required 10 years and the Portland cement con-
crete required approximately 58 years.

• The corrosive process of the steel reinforcement 
in the concrete with the addition of GBFS 80%, 
CE and HB began after 99 days of exposure to 
an accelerated carbonation environment, and 
corrosion current density greater than 1 µA/cm2 

could be observed.
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