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ABSTRACT: Carbonation is a deleterious concrete durability problem which may alter concrete microstruc-
ture and yield initiation of corrosion in reinforcing steel bars.  Previous studies focused on the use of Artificial 
Neural Networks (ANN) for the prediction of concrete carbonation depth and to minimize the need for destruc-
tive and elaborated civil engineering laboratory tests. This study aims to provide improved accuracy of simula-
tion and prediction of carbonation with an ANN architecture including eighteen input parameters employing 
alternative Scaled Conjugate Gradient (SCG) function. After ensuring a promising value of the coefficient of 
correlation as high as 0.98, the influence of proposed input parameters on the progress of carbonation depth 
was studied. The results of this parametric analysis were observed to successfully comply with the conventional 
civil engineering experience. Hence, the employed ANN model can be used as an efficient tool to study in detail 
and to provide insights into the carbonation problem in concrete.
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RESUMEN: Investigación de los parámetros que influyen en el progreso de la profundidad de carbonatación del 
hormigón usando redes neuronales artificiales. La carbonatación es un problema perjudicial de durabilidad del 
hormigón que puede alterar la microestructura del hormigón y provocar el inicio de la corrosión en barras de 
refuerzo. Estudios previos se centraron en el uso de redes neuronales artificiales (RNA) para la predicción de 
la profundidad de la carbonatación del hormigón y para minimizar la necesidad de pruebas de laboratorio des-
tructivas y elaboradas. Este estudio tiene como objetivo proporcionar una precisión mejorada de la simulación 
y la predicción de la carbonatación con una arquitectura RNA que incluye dieciocho parámetros de entrada 
con una función alternativa de Gradiente de Conjugado Escalado. Después de asegurar un valor prometedor 
del coeficiente de correlación tan alto como 0.98, se estudió la influencia de los parámetros de entrada propues-
tos en el progreso de la profundidad de carbonatación. Se observó que los resultados de este análisis paramé-
trico cumplían exitosamente con la experiencia de ingeniería civil convencional. Por lo tanto, el modelo RNA 
empleado puede ser utilizado como una herramienta eficiente para estudiar en detalle y proporcionar informa-
ción sobre el problema de carbonatación en el hormigón.
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1. INTRODUCTION

Carbonation problem in concrete structures 
results in the formation of calcium carbonate due to 
the neutralization reaction between calcium hydrox-
ide and carbonic acid, which yielded by the ingress 
of CO2 gas from the atmosphere into the concrete 
microstructure. (1, 2). As a result, the microstructure 
of hardened cement paste is altered and the pH level 
of the concrete decreases from 13.5 to 9.5 (3). These 
changes are known to lead to de- passivation of rein-
forcement bars’ protective layer (3, 4). Consequently, 
oxygen supply and moisture may initiate corrosion 
of reinforcement bars. 

Determining the progress of concrete carbon-
ation depth, which is known to depend on several 
factors, is critical for the evaluation of the perfor-
mance of reinforced concrete structures throughout 
their service lives; since the initiation of carbon-
ation-induced corrosion of reinforcing bars might 
cause severe damages in concrete (3). Conventional 
experimental methods for the determination of car-
bonation depth in concrete are generally destructive, 
elaborate and commonly fail to provide detailed 
information on the extent of the effect of each 
influencing factor on the progress of the problem 
(5). Therefore, a non-destructive model capable of 
considering different concrete-related parameters 
individually and predicting the extent (i.e. the depth) 
of carbonation in concrete that could be exposed to 
varying environmental conditions within a specified 
exposure period is required. Such a model would 
provide extended understanding of carbonation 
process, and could contribute to the improvement 
of other holistic studies aiming to determine the 
general performance of reinforced concrete struc-
tures during their service lives.

Artificial neural networks (ANN) applications 
have been used effectively for several decades for 
simulation and prediction of varying case studies in 
both applied and social sciences (6, 7). It generalizes 
new inputs based on acquired knowledge of past 
experience. ANN has been previously used only to 
an extent in the field of concrete carbonation depth 
prediction (8–11). Majority of these previous stud-
ies are based on the limited amount of data and 
generally focus on the use of Levenberg-Marquardt 
function due to its speed of convergence and mea-
sure the network performance from the values of R 
(correlation coefficient) and measured errors. 

This study, proposes an ANN model that con-
siders eighteen environmental and concrete-related 
input parameters; and based on their selection, pro-
vides an estimation for the extent of the resultant 
concrete carbonation, as an efficient alternative to 
conventional laboratory experiments done by phe-
nolphthalein indicator methods. Beside its advan-
tageous use in carbonation depth determination, 
a viable intelligent prediction method has also the 

potential to enable researchers working in the field 
of concrete carbonation to gain further insights 
on  the effect of each influencing parameters in a 
systematically way; without needing to carry out 
the “time, resources and labour-consuming” labora-
tory experiments. This study, which is a continua-
tion of previous work (8), seeks to initially provide 
an enhanced prediction efficiency by employing an 
increased amount of data for training and testing, 
together with the use of Scaled Conjugate Gradient 
(SCG) function, as an alternative to typically used 
Levenberg-Marquardt function. After ensuring a 
high prediction and simulation accuracy, the pro-
posed model was further employed to verify the fea-
sibility of using this model as an intelligent tool for 
studying the progress of concrete carbonation and 
to explore the role of key input parameters on this 
time-dependent concrete durability problem.

2. METHODOLOGY

2.1. Data Acquisition and Preparation

The progress of carbonation front is known to 
be governed by cement composition, the composi-
tion of additives, concrete mix properties, curing 
conditions, environmental factors such as relative 
humidity and temperature, as well as the duration of 
carbonation attack (12–14). 18 input variables that 
were identified as influencing the progress of car-
bonation were employed in the study. These input 
values are as shown in Table 1. Carbonation depth 
in mm was selected as the output variable. Dataset 
used in this study was extracted from experimental 
research works from related literature. For this pur-
pose, only the experimental studies in the literature 
that provided the proposed 18 input and the output 
(presented in Table 1) with clear units that can be 
harmonized within each parameter, were selected 
for the acquisition of the dataset, and any other 
study failing to provide all of the sought informa-
tion in this manner was disregarded. As a result, 378 
experimental cases in 12 studies (12, 13, 15–24) that 
were found to have comparable characteristics, were 
selected. Even though the chemical compositional 
information for the binders was carefully extracted 
and used as inputs, some other critical parameters 
such as cement’s loss on ignition information could 
not be reached uniformly in all scanned studies. 
Exact aggregate gradation, admixture inclusion and 
characteristics are the other concrete parameters 
that could not be reached systematically. Therefore, 
their potential effects on the progress of concrete 
carbonation have not been considered within the 
scope of this study.

Table 1 also presents related references in the lit-
erature that provide information on the relevance 
of identified input parameters on the carbonation 
depth; supporting their inclusion to the proposed 
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ANN model. Multiple linear regression (MLR) was 
also additionally employed in order to verify the 
relationship between the output and the multiple 
input variables presented in Table 1, and the predic-
tive ability of the constructed MLR equation was 
checked by  the coefficient of determination (R2). 
MLR is one of the most commonly used statistical 
methods used in the literature which aims to provide 
an understanding of the behaviour of a dependent 
variable with several defined independent variables. 
Silva et al. (36), is one of the examples in the related 
literature studying carbonation problem in concrete 
with MLR, even though it is acknowledged that not 
all influencing parameters’ relation with the carbon-
ation progress would be necessarily linear. In their 
study, an R2 value of 0.712 was reported when a 
certain range of relative humidity values was con-
sidered, and a higher R2 could be observed with 
another range of the mentioned independent vari-
able. In this study, where the complete ranges of the 
variables mentioned in Table 1 were considered, the 
coefficient of determination was obtained as 0.713; 
indicating that 71.3% of the variations could be 
defined by changes in the input parameters used. 
MLR was used as a supplementary tool in this study 
and further detailed statistical analyses have been 
considered as out of the scope of this particular 
work, that is mainly focused on the use of artificial 
neural networks for prediction of concrete carbon-
ation progress. 

2.2.  Data processing, ANN Architecture and 
Parameters

In neural nets modelling, normalization of data 
is important to avoid early saturation within the 
hidden layer, which causes slower convergence (37). 
In addition, the operation is necessary in order to 
avoid scaling variables to zero thereby reducing 
their significance. Normalization could be binary or 
bipolar numbers depending on the transfer function 
adopted. The logistic sigmoid transfer function was 
used between the layers hence binary normaliza-
tion was performed. Normalization was performed 
within each variable.

In this study, feed-forward back propagation was 
used for two optimization functions. Results obtained 
with Levenberg-Marquardt Backpropagation (LM), 
which is commonly used in ANN studies of different 
fields due to yielding a lower number of iterations, 
were used for comparison with the results obtained 
from an alternative function, Scaled Conjugate 
Gradient (SCG) suggested in this study. 

The network contains three (input-hidden-out-
put) layers with one hidden layer. The input layer 
represents the sources node, which receives signals 
from the external environment. Within this layer, 
18 nodes (see Table 1.) were identified from factors 
influencing the progress of carbonation in concrete. 
Figure 1 illustrates the architecture of the proposed 
model. Results of the preliminary studies carried 

Table 1. Descriptive information on the input and output variables defined in the proposed model  
and the references indicating their relevance to concrete carbonation

Variables Unit Min Max Mean Std. D Related References

Cement CaO content (%) 45.7 68.02 62.19 3.63 (25)

Cement SiO2content (%) 20.21 31.2 21.71 2.45 (26, 27)

Cement Fe2O3 content (%) 1 6.15 3.41 1.03 (26, 27)

Cement Al2O3 content (%) 3.1 9.2 4.71 1.28 (26, 27)

Fly Ash CaO content (%) 0 5.2 1.43 1.65 (26, 27)

Fly Ash SiO2content (%) 0 55.3 23.98 25.85 (26, 27)

Fly Ash Fe2O3 content (%) 0 13.92 4.75 5.55 (26, 27)

Fly Ash Al2O3 content (%) 0 30.08 12.79 13.78 (26, 27)

Total cement content (kg/m3) 0 280 50.19 83.38 (26, 27)

Total fly ash content (kg/m3) 67 486 300.08 98.31 (28–30)

Water content (kg/m3) 102.12 220 167.87 27.19 (28)

Water/binder ratio (%) 0.28 0.84 0.49 0.11 (28)

Curing time (days) 1 90 31.16 22.22 (18, 31)

Curing relative humidity (%) 50 100 89.38 18.40 (18, 31)

External temperature (oC) 12 32.5 20.67 5.19 (28, 32, 33)

External CO2 content (%) 50 100 67.37 9.09 (16, 32, 34)

External relative humidity (%) 0.03 100 20.03 24.72 (35)

Carbonation duration (days) 3 2070 180.31 334.60 (12, 13, 15–24)

Carbonation depth (mm) 0 64.03 16.36 14.84
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out indicated that 10 neurons were the optimized 
value for the hidden layer (8). Therefore, this hidden 
neuron value was kept constant in this study. The 
output layer has only one node, which is the depth 
of carbonation measured in concrete. 

Three different learning schemes (LS) were 
adopted with training/testing distributions, as LS1 
being 40:60; LS2 being 50:50; and LS3 being 60:40 % 
of the sample set. Hence, combinations of two train-
ing algorithms with three learning schemes with a 
constant hidden neuron value were studied with each 
optimization function (see Table 2). A MATLAB 
script, which has been uploaded to a public reposi-
tory (38), was used to perform this analysis. Network 
training goal was selected as 20,000 iterations and 
mean square error (MSE) was aimed to reach the 
value of 0.001. Holdout method of cross-validation 
was used to validate network performance. The 
adequacy of the proposed ANN models to predict 
the concrete carbonation depth effectively was stud-
ied by taking correlation coefficient (R) and mean 
squared error (MSE) as a basis for measurement. 

2.3.  Parametric Analysis on Proposed ANN Model 
to Study the Progress of Concrete Carbonation 

Parametric analysis study was made to verify the 
robustness and generalization ability of the proposed 
ANN architecture, in addition, to provide insights 
into the effect of selected key input parameters on 

the evolution of carbonation depth. The individual 
effects of selected key input parameters were studied 
systematically by running the model with a varying 
parameter of interest while keeping the other inde-
pendent parameters constant. For instance, while an 
external parameter such as temperature, CO2  con-
tent or relative humidity (inputs 15–17) were being 
varied in order to investigate their effects on carbon-
ation progress, the other concrete related parame-
ters (inputs 1–14) were kept constant. On the other 
hand, in order to study the effect of other interde-
pendent parameters, the dependency of the related 
parameter was also considered in order to ensure 
the consistency of the findings. For instance, in the 
case of variation of cement content (kg/m3),  the 
water content (kg/m3) was also varied accordingly, 
in order to be able to keep a constant water/binder 
ratio. Similar precautions have been taken when 
a cement compound’s composition (i.e. Cement’s 
CaO or SiO2  content) were being varied to ensure 
reasonable contents for other cement compounds. 
For instance, considering the fact that the sum-
mation of all compounds’ contents should never 
be more than 100%; increasing the content of one 
compound while keeping the contents of other com-
pounds constant would not be coherent. In order to 
ensure realistic combinations of cement compounds 
contents, a total of 12 real cement cases with vary-
ing compound content percentages were selected 
from the used dataset and parametric analyses were 

Figure 1. Architecture of the proposed model.
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carried out on these data accordingly. In this way, 
the progress of carbonation depth due to the varia-
tion of the focused parameter was investigated. 
A  detailed discussion of the obtained results and 
their comparison with the previous literature are 
presented in the following section.

3. RESULTS AND DISCUSSIONS

3.1.  Prediction efficiencies of the proposed models 
based on the correlation coefficient and mean 
squared error results:

Results for correlation coefficient (R), mean 
squared error (MSE) and total network iteration 
for the two studied optimization functions are pre-
sented in Table 2. The number of iterations indicates 
how fast the results are provided by the network. 
The number of iterations to obtain the results were 
observed to be up to a maximum of 1581, which was 
recorded to be yielded only within a minute. Since 
all networks yielded the results in less than a minute, 
which is not considered as critical compared to con-
ventional civil engineering laboratory experiment 
durations, the number of iterations was not focused 
as determining criteria in order to choose an effi-
cient network. Therefore, the discussion of results 
is based on mainly on the values of correlation coef-
ficient (R) and mean squared error (MSE) obtained 
for each case. 

It is observed from Table 2 that high R and low 
MSE values were obtained for all presented cases 
that indicate notable level accuracy of the model in 
general since even the lowest value was observed to 
be as high as 0.957; indicating more than 95% pre-
diction accuracy. 

It was observed that the correlation coefficient 
values yielded with both LM and SCG functions 
were very close to each other within each indi-
vidual case The results presented in Table 2 also 
indicate that the carbonation depth prediction accu-
racies increase when training data set was increased 
from 40% to 60%, since R values are observed to 
be with increased and MSE values are observed 
to be decreased. R-value increased up to 0.98, for 

both optimization functions in the case of learning 
scheme-3 where 60:40 training to testing data dis-
tribution was employed. Therefore, the second part 
of this work, in which the influence of key input 
parameters on the progress of carbonation prob-
lem in concrete will be studied, the combination of 
learning scheme-3 conditions, with 60:40 train:test 
data distribution selection. It has been observed that 
the majority of the studies in the related literature 
employ LM function without reporting any major 
justification (8, 11, 39). As the R values yielded with 
both LM and SCG are observed to be almost equal 
in Table 2, SCG has been proposed to be used in the 
second stage of this study (i.e. parametric analysis 
section) in order to emphasize the possibility of not 
using LM as kind of a “default” selection, while still 
maintaining high accuracy levels.

Training and testing subset network performance 
and the respective regression evolution for this best 
case for Scaled Conjugate Gradient (SCG) function 
are presented in Figures 2a and 2b, respectively. 

A partially comparable study was previously 
presented by Kellouche et al. (2017) (40); in which 
only six input parameters were used in a three-layer 
neural net having 8 neurons in the hidden layer. 
Furthermore, previous works done on the concrete 
carbonation by using ANN approach for prediction 
(9–11) are observed to have limited number of exper-
imental data, which is known to negatively affect the 
reliability of the predictions’ accuracy. Beside the use 
of a significantly increased number of experimental 
data, this study presents a more detailed investiga-
tion on the efficiency of alternative ANN models 
when compared to other studies in the related lit-
erature, with results reported for different learning 
schemes. In addition to these, with the innovative 
inclusion of concrete components’ compositional 

Table 2. Results for R, MSE and number of 
iterations with proposed learning schemes

Learning 
Scheme 

Optimization 
Method R MSE iter.

40:60 SCG 0.964 0.0039 467

LM 0.957 0.0045 40

50:50 SCG 0.975 0.0026 789

LM 0.976 0.0026 44

60:40 SCG 0.983 0.0019 1581

LM 0.985 0.0016 41

Figure 2. The best prediction case using SCG with 
60:40 data distribution. Part-a (left) The evolution of 
MSE Part-b (right) Regression values for measured 

vs. predicted carbonation depth.
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information as input parameters, which is not con-
sidered in similar works in the related literature 
before, this study provides the grounds for exploring 
the possibilities of significantly improved prediction 
models for carbonation depth in concrete, which 
might then be employed for successful investigations 
on the progress of carbonation problem with vary-
ing conditions, providing further understanding on 
the fundamentals of this critical durability issue in a 
systematical and accelerated way.

3.2.  Parametric analysis results studying the 
progress of carbonation in concrete with the 
effect of selected major input parameters on 
the carbonation depth

After the determination of  the best-case 
 combination of the model yielding highest predic-
tion accuracy for the use of the group of Scaled 
Conjugate Gradient Backpropagation, the model 
was further employed to study the progress of car-
bonation depth in concrete with the individual influ-
ence of each one of eight selected input parameters. 
The study focused only on the effects of CO2 con-
tent, external temperature and humidity, w/c ratio 
of concrete, fly ash inclusion, the cement content of 
concrete, as well as the contents of two well-known 
compounds of cement, that are CaO and SiO, with 
the intention of providing information primarily on 
the presented prominent parameters at this stage. 
Results obtained within this parametric sensitivity 
study are presented in Fig 3–10.

Figure 3 demonstrates the effect of varying CaO 
content of cement on the concrete carbonation 
depth at the ages of 90, 180, 365, 545 and 730 days. 

For generating this parametric analysis; a constant 
cement content of 300 kg/m3 was considered with 
no fly ash addition and with a constant w/c ratio of 
0.51. For the external parameters such temperature, 
relative humidity and CO2 content, values of real-
istic cases such as 20 °C, 65% and 0.03% were con-
sidered, respectively. Carbonation depth is clearly 
observed to be increasing with increasing concrete 
age, which is in accordance with the conventional 
civil engineering experience and with previously 
published experimental works (12, 13, 15–24), indi-
cating the consistency of the simulation. Increasing 
CaO content is observed to lead to an increase in 
depth of carbonation for all ages. The observed 
increase of carbonation depth with increasing CaO 
could be described with polynomial trends for the 
cases of 180 and 730 days (as two examples for 
earlier and later ages), which yielded very high R2 
 values such as 0.99 in both cases. The evolution of 
the observed increase and the trend lines could not 
be directly compared to the results of previous stud-
ies, since the effect of cement CaO on the concrete 
carbonation has not been presented in a comparable 
manner in the related previous literature. It was also 
observed that, for cement having relatively lower 
CaO, the effect of increasing sample’s age (i.e. lon-
ger exposure to carbonation) is more evident than 
for the cement having higher CaO (see Figure 3). 
Additionally, concrete with higher CaO cement con-
tents are observed to yield much higher carbonation 
depths even in the earlier ages. A similar remark has 
also been made by Arandigoyen et  al. (2006) (41) 
who studied carbonation of mortars with the addi-
tion of lime that yielded an increased total amount 
of CaO and hence, increased amount of CH in the 

Figure 3. Effect of cement CaO content on carbonation.
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mix. The observed increase in carbonation depth 
might be related to the increased availability of 
portlandite (CH) in concrete mixes manufactured 
with cement having high CaO contents, that can 
be available for carbonation Further experimental 
studies focusing on these mechanisms could be ben-
eficial, since this observation might be potentially 
critical for understanding the critical threshold of 
CaO contents of cements that are to be considered 
in a certain concrete mix design, so that a certain 
tolerated carbonation depth is not exceeded. 

Similarly, Figure 4 demonstrates the effect of 
varying SiO2 content of cement on the concrete car-
bonation depth at the ages of 90, 180, 365, 545 and 
730 days. While varying the SiO2 content of cement 
within the range shown in Figure 4, the other con-
crete and environmental parameters were set in 
the same values as previously defined for Figure 3. 
Figure 4 also demonstrates that carbonation depth 
increases with increasing sample age, as observed in 
Figure 3. Carbonation depth was observed to have 
increased the with an increase in SiO2 content. SiO2 
containing clinker compounds in cement are known 
to be likely to contribute to C-S-H formation in con-
crete, that is also known to be prone to the action 
of carbonation generally after the carbonation of 
CH (26). This could be a potential reason for the 
observed carbonation depth increase with increas-
ing SiO2 content, that should be further verified with 
additional studies focusing on cement’s SiO2 con-
tent. The increase in carbonation depth is observed 
to start ceasing beyond a SiO2 content value of 24%. 
The trend of the observed progress of carbonation 
depth could be described with polynomial fits for 

the cases of 180 and 730 days, with R2 values higher 
than 0.90 in cases of both of these ages. The evo-
lution of the observed increase and the trend lines 
could not be compared directly with the previous 
literature since no other comparable study on the 
effect of cement SiO2 on carbonation could be iden-
tified in the previous literature. 

Cement types are mainly classified according to 
their chemical compositions. Both Silva et al. (2014) 
(36) and Elmoaty et  al. (2018) (42) emphasize the 
importance of cement types in the determination 
of final carbonation depth. Some of the studies in 
the literature, have considered only the cement con-
tent (kg/m3), practically ignoring the type of cement 
to be added (11, 40). Some other studies presented 
concrete carbonation results varying based on only 
certain cement types that were specified in those 
particular studies (42) in a categorical manner, and 
their models cannot be employed directly for other 
cases where another cement could be used. The 
model proposed in this study is capable of consid-
ering the employment of different types of cement 
more extensively; since, the compound composi-
tions are directly taken into consideration, allowing 
the inclusion of numerous possibilities. 

Figure 5 and 6 illustrate the effect of increas-
ing cement content and the effect of increasing fly 
ash inclusion, respectively, on concrete carbonation 
depth at the ages of 90, 180, 365, 545 and 730 days. 
For generating these parametric analyses; constant 
values for environmental parameters that are 20 °C 
temperature, 65% relative humidity and 0.03% CO2 
content were considered. For figure 5; cement con-
tent was varied between 260–580 kg/m3 for a concrete 

Figure 4. Effect of cement CaO content on carbonation.
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mix of a constant w/c ratio of 0.51 and with no fly 
ash addition. For figure 6; cement content and w/c 
ratio were kept constant at values 300  kg/m3 and 
0.51, respectively, where fly ash inclusion was varied 
between 0–70%. 

Figure 5 shows that there was decrease in car-
bonation depth with increasing cement content per 
meter cube of concrete, for all ages. These decreas-
ing behavior of carbonation depth values estimated 
for 180 and 730 days in this study could be described 
with polynomial trend lines with relatively high R2 
values as demonstrated in the figure. This observed 

decreasing effect could possibly be due to the 
increasing density of concrete as the cement content 
increases. Hence, the ingress of CO2 into concrete to 
initiate carbonation becomes less in concrete mixes 
with higher densities (1). These findings are also in 
accordance with the previous literature (40). Kazts 
et  al. (43) also has discussed the effect of increas-
ing cement content on the progress of carbon-
ation, in terms of carbonation “coefficient” rather 
than the determined “depth”; hence the reported 
results could not be directly compared with the 
values obtained in this study. In their experimental 

Figure 5. Effect of cement content on carbonation depth.

Figure 6. Effect of FA content on carbonation depth.
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study, Elmoaty et al. (42) reported a 4 mm decrease 
in  carbonation  depth  when cement content was 
increased from 350 to 450 kg/m3. In this study, when 
the values reported in figure 5 for the increase in 
cement content from 340 to 460 kg/m3, an average 
of 4.02mm decrease in carbonation depth could 
be observed; indicating consistency of the tenden-
cies and values predicted with the model proposed 
in this study with the findings of an independent 
experimental work.

Figure 6 illustrates that the use of high volume 
fly ash increased the susceptibility of concrete to 
carbonation attack. This finding is in accordance 
with experimental results in the (44). In this fig-
ure, the effect of fly ash addition becomes more 
evident primarily at later ages such as 545 and 730 
days. In general, an increase in the fly ash addition 
is observed to yield an increased carbonation depth 
as suggested in the previous literature (40). This 
general trend has been steadily observed except for 
the specific value of 50% fly ash replacement yield-
ing a relatively lower value of carbonation depth in 
this study. Further studies with different set of con-
stant values for input parameters at a fly ash con-
tent of 50%, would be needed in order to provide 
more insights on this specific tendency observed 
at this particular fly ash content value. for In their 
experimental study, Hongzhou and Kasami (2013) 
(45) have investigated the increase in the contents 
of three types of fly ashes on concrete carbonation 
depth; and a significant increase in the depth of 
carbonation with the increase in fly ash content has 
been reported in their study as well. Hongzhou and 
Kasami (2013) (45) also emphasized the effect of 
fly ash type, which was intended to be covered by 

considering the fly ash compounds compositions 
as individual influencing input parameters within 
this study, in addition to the its total content. Trend 
lines fitted to these behavior tendencies observed 
at different ages in figure 6 could not be compared 
directly to previous studies, due to unavailability of 
necessary information in the literature in a compa-
rable manner. The possibility of quantification of 
carbonation depth to be expected in concrete with 
fly ash addition under specified conditions accu-
rately, would serve to the improvement of studies 
dealing with the determination of performance of 
structures during their service lives.

Figures 7 and 8 demonstrate the effect of  vary-
ing CO2 content and varying temperature respec-
tively, on the concrete carbonation depth at the 
ages of  90, 180, 365, 545 and 730 days. A total of 
twelve CO2 values were used in the generation of 
the graph presented in Figure 7, which are varying 
between 0,03% (i.e. equivalent to the natural value), 
and 3.03% (i.e.  equivalent to hundred times more 
of  the natural value). Cement content and w/b ratio 
were kept constant as 300 kg/m3 and 0.51, for the 
case of  no fly ash addition, the relative humidity 
was kept at 65%, at 20 °C temperature, as in other 
parametric analyses described above. A slight but 
steady increase in carbonation depth was observed 
with the increase in CO2 content within the pro-
posed range. Results presented in the previous lit-
erature also suggests an increase in the carbonation 
depth with increased CO2 content (40). As it can be 
noted from the graph, the points indicating carbon-
ation depth values for the first eight CO2 contents 
ranging between 0.030–0.18 % are very close, in 
fact yielding a variation of carbonation depth only 

Figure 7. Effect of CO2 content on carbonation depth.
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within 0.1–0.2mm. In relative terms, it is observed 
that the variation in the carbonation depth recorded 
for CO2 beyond 0.18% (i.e. last three data points 
plotted for each age) is more appreciable than the 
variation in the carbonation depth for the CO2 con-
tent range lower than 0.18 %. It is observed that the 
increasing tendency of carbonation depth could be 
represented by a linear trend line fits for the given 
range of  CO2 content.

According to these obtained results, the carbon-
ation values that are presented for the entire CO2 con-
tent range of Figure 7 are observed to be relatively 
less remarkable when compared with the carbon-
ation depth variations observed with the changes in 
other parameters, such as in the case of temperature 
variation (Fig 8), in which the recorded carbonation 
depth could increase even beyond 50 mm. These 
findings may imply that; even though the presence of 
CO2 is essential for the occurrence of carbonation, 
the CO2 content itself  is not the primary parameter 
defining the severity of the extent of the carbonation 
progress. Rather, a combination of other parameters’ 
critical values is observed to be determining the sig-
nificantly higher values of carbonation depth. 

Figure 8 illustrates the results of the parametric 
analysis generated for temperature varying between 
10–65° C. Numerous regions in the world are known 
to experience apparent temperature values as high 
as 40 degrees Celsius. In some middle east coun-
tries such as, Iraq and Kuwait, the temperature is 
reported to go beyond even 53 ° C (46), which makes 
the consideration of concrete carbonation at high 
temperatures noteworthy. Another reason for the 
interest in studying carbonation in relatively high 
temperatures is due to the fact that high tempera-
tures are used as an important experimental condi-
tion in “accelerated” carbonation tests. Hence, the 

selected range of temperature was decided to be 
used in the parametric analysis. For this analysis in 
figure 6, the constant cement content of 300 kg/m3, 
0.51 w/ratio, 65% relative humidity and 0.03% CO2 
content values were used. In Figure 8, the increase 
in temperature is observed to yield in increased car-
bonation depth. This behavior could be due to the 
increased solubility of CO2 gas that is expected at 
higher temperatures, facilitating the carbonation 
action in two phases: diffusion of CO2 and reduction 
in moisture content which enables gaseous diffusion 
and increased diffusivity, as also explained in detail 
in the previous literature (1). The increasing carbon-
ation depth tendencies in figure 8 plotted for each 
age in this study could be fitted with polynomial 
trend lines of different degrees, depending on the 
age, when temperature was considered up to 65° C. 
Liu et al. (32) has reported linear behavior of tem-
perature effect on increasing carbonation depth in 
their study in which temperature value was extended 
only up to 30° C. Hence, extending temperature val-
ues to include the cases of accelerated carbonation 
as done in this study, provided further insights on 
the changing manner in the progress of carbonation 
in concrete, which could be critical consideration for 
researchers aiming to quantify carbonation depth in 
distinctive studies.

Figures 9 and 10 demonstrate the effect of  vary-
ing relative humidity (RH) and water/binder ratio 
respectively, on the concrete carbonation depth 
at the ages of  90, 180, 365, 545 and 730 days. In 
Figure 9, up to 75 % of RH, the carbonation depth 
increases as the RH increases. Further increase in 
RH as observed to cause a decrease in the depth 
carbonation. This trend is observed to become 
more evident mainly at later ages of  the concrete. 
Experimental studies in the literature (32) describe 

Figure 8. Effect of temperature on carbonation depth.
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a similar tendency that they observed and suggested 
that it might be experienced due to saturation in 
the pore spaces within the microstructure. The RH 
value that yielded the highest carbonation depth is 
observed to be around 75%, which is close to the 
value reported in (40). Polynomial trend lines of 
second and third degrees were used for defining 
the tendencies of  carbonation depth progress in 
180 and 730 days, respectively. In their experimen-
tal study, Liu et al. (2019) (32) also reports a poly-
nomial tendency of  carbonation depth increase 
with around 70% relative humidity being the value 

yielding maximum carbonation depth. Hence, the 
model proposed in this study is observed to pro-
vide reliable information on the carbonation depth 
evolution with respected to relative humidity, since 
the results obtained are greatly in harmony with 
independent experimental concrete carbonation 
studies. 

Fig 10 shows that an increase in the water/binder 
ratio yields in an increase in the carbonation depth 
of concrete. The increase in carbonation depth 
could be defined with a polynomial trend as shown 
in figure 10 in this study. Katz et al. (43) also reports 

Figure 9. Effect of relative humidity on carbonation.

Figure 10. Effect of water/binder ratio on carbonation.
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a very clear increase in concrete carbonation with 
the increasing w/c ratio, without suggesting a fitted 
trend for the increase that they have observed. Other 
concrete carbonation experimental studies (47) also 
report increasing concrete carbonation as a result 
of increased water/cement ratios used in the con-
crete mixes. Increased water/binder ratio is known 
to yield increased porosity and permeability; hence, 
carbonation attack may progress more through the 
concrete. 

In this study, primarily the influence of eight 
selected input parameters on the progress of con-
crete carbonation has been presented in order to 
investigate the feasibility and the efficiency of the 
proposed carbonation depth prediction model to 
be employed for further understanding the funda-
mentals of this concrete problem. Different than 
other previously suggested ANN models, the com-
positional information of both cement and poten-
tially added fly ash have also been considered in this 
study, enabling to use the model by differentiating 
between different cement types that could be used 
in real cases. High overall prediction accuracy of 
the proposed model, as well as the compliance of 
the findings of generated parametric analyses with 
other reported independent experimental results 
in the literature, imply the possibility of successful 
employment of the proposed ANN model to inves-
tigate the progress of carbonation problem in con-
crete under numerous combinations of influencing 
parameters in an efficient way. 

4.  CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE STUDIES

In this study, a novel ANN model including 
cement and fly ash compound composition as influ-
encing input parameters was used by employing two 
different optimization functions. Relatively a large 
data set acquired systematically from the literature 
was used in order to ensure the representability 
and the reliability of the calculations carried out. 
An increase in training dataset from 40% to 60%, 
improves the network prediction performance both 
for the aspects of R and MSE values, with both 
models using Scaled Conjugate Gradient (SCG) and 
Levenberg-Marquardt (LM) functions. Significantly 
high R values, such as more than 0.98, together 
with significantly low MSE values obtained in this 
study for both SCG and LM functions, strongly 
suggest that the model with proposed architecture 
can be efficiently used for the prediction of carbon-
ation depth in concrete. The insignificant difference 
between of LM’s and SCG’s accuracies, indicates 
the convenience of the use of alternative learning 
algorithms such as SCG in these fields of studies, 
since the level accuracy is a more critical efficiency 
criterion than the speed of convergence is for civil 
engineering applications.

Parametric studies carried out after the verifi-
cation of the prediction efficiency of the proposed 
model provided noteworthy findings. Increasing 
cement’s CaO content of has been observed to yield 
an increasing tendency of carbonation depth of 
concrete. Moreover, concrete mixes with relatively 
higher CaO contents were observed to yield signifi-
cantly higher carbonation depths even in the earlier 
ages. An increase in the cement’s SiO2 content has 
also been observed to an increase in concrete car-
bonation. This increase in carbonation depth was 
observed to start ceasing beyond a SiO2 content 
value of 24% in this study. Further investigations on 
binders’ compounds compositions have the poten-
tial to provide an improved understanding on the 
characteristics and the types of binders that should 
be sought after under critical carbonation expo-
sure conditions. Carbonation depth in concrete was 
observed to be decreasing with increasing cement 
content for all ages. On the other hand, an increas-
ing fly ash content was observed to increase the 
progress of carbonation. The effect of fly ash addi-
tion became more evident primarily at later ages 
such as 545 and 730 days.

The results obtained by the parametric analy-
ses carried out with the proposed ANN model also 
showed that an increase in CO2 content within the 
range from 0.03% (i.e. natural value) up to 3% (i.e. 
hundred times more than the natural CO2 content), 
yielded a steady linear increase in carbonation depth 
of concrete. The actual depth of carbonation in mil-
limeters yielded in this studied CO2 content range 
was observed to be relatively less remarkable when 
compared with the carbonation depth values yielded 
with during the parametric analyses of other inputs. 
Therefore, it is suggested that even though the pres-
ence of CO2 is essential for the occurrence of car-
bonation, the severity of the carbonation progress 
in concrete is primarily defined by a combination of 
other considered parameters’ critical values, rather 
than solely being due to an increased CO2 content. 
On the other hand, the variations in other external 
exposure conditions such as temperature, has been 
observed to yield a relatively much higher increase 
in the depth of carbonation in concrete. This 
increase in carbonation depth was observed to be 
with changing tendencies, when the range of tem-
perature was extended to include higher values. It 
was also observed that an increase in the external 
relative humidity up to the value of 75%, yielded 
increased depths of concrete carbonation. However, 
when this value was exceeded a decrease in the prog-
ress of carbonation was experienced. It was also 
observed that concrete mixes having higher water/
binder ratios were yielding an increased level of car-
bonation, as expected. 

In addition to the obtained high general predic-
tion accuracy, the high level of compliance of the 
findings obtained by the model on carbonation 
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progress under the selected prominent parameters 
with the results reported by independent previous 
experimental studies in the literature, was inter-
preted as an indication of the proposed model’s 
potential success in investigating concrete carbon-
ation cases with varying combinations of parameter 
values in a reliable way. Hence, the employed model 
has the potential to serve as an efficient tool to study 
carbonation problem in concrete, providing further 
insights on the fundamentals of this critical durabil-
ity problem without using any elaborated, time and 
resources-consuming laboratory experiments

Further studies should be carried out in order 
to provide understanding on the remaining input 
parameters considered in the proposed model in 
this study. Also, the studies should be extended 
to include concrete parameters such as aggregate 
properties, loss on ignition of binders, as well as 
the cases of concrete mixes prepared with chemical 
admixture inclusions. Further improvement of the 
intelligent studies on concrete carbonation might be 
explored in the future studies by employing other 
promising methods such as deep learning and heu-
ristic algorithms. Moreover, a detailed set of statisti-
cal studies that could be carried out in parallel with 
the presented ANN study, is expected to provide an 
understanding of interrelations of all parameters 
considered in an enhanced way. 
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