Materiales de Construcción, Vol 56, No 283 (2006)

Alkali-activated slag mortars reinforced with ar glassfibre. Performance and properties


https://doi.org/10.3989/mc.2006.v56.i283.10

F. Puertas
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid, Spain

A. Gil-Maroto
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid, Spain

M. Palacios
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid, Spain

T. Amat
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Madrid, Spain

Abstract


In light of the practical problem posed by the high drying shrinkage rate exhibited by alkali-activated slag (AAS),due to these materials exhibited a high drying shrinkage the present study analyzes the behaviour of alkali-activated slag mortars reinforced with alkali-resistant (AR) glass fiber especially designed to reduce drying shrink aging cementitious systems. To this end, both alkali-activated slag and reference Portland cement mortars were prepared, with and without AR fiber (in dosages ranging from 0 to 1.1% by weight of the binder). These mortars were subjected to the following tests: drying shrinkage,mechanical strength after 2, 7 and 28 days, toughness,and high temperature. The microstructure of the materials was also studied by SEM/EDX techniques. At a percentage of 0.22%, AR fiber was found to induce a significant reduction (over 20%) in drying shrinkage, without detracting from the fine resistance strength, of alkali activated slag mortar. Moreover, plain activated slag mortars recovered 20% of their initial mechanical strength after exposure to high temperatures, and ins specimens reinforced with glass fiber at a rate of 0.22%,recovery climbed to 50%.

Keywords


alkali-activated slag mortars; glassfibre; mechanical strength; shrinkage; heat resistance

Full Text:


PDF

References


(1) Glukhovskij, V., Zaitsev, Y. y Pakhomow, V.: “Slag-alkaline cements and concrete-structures, properties, technological and economical aspects of the use”, Silicates Industriels, 10 (1983), pp. 197-200.

(2) Glukhovskij, V., Rostowkaja, G. S. y Rumyna, G. V.: “High strength slag-akali cement”, VII ICCC (París) (1980), vol. III, V-164-168.

(3) Puertas, F., Gutierrez, R. De, Fernández-Jiménez, A., Delvasto, S. y Maldonado, J.: “Morteros de cementos alcalinos. Resistencia química al ataque por sulfatos y agua de mar”, Mater. Construcc., vol. 52, nº 267 (2002), pp. 55-71.

(4) Byfors, K., Klingstedt, G., Lehtonen, V., Pyy, H. y Romben, L.: “Durability of concrete made with alkali-activated slag”, 3rd Inter. Conf. on fly-ash, silica fume, slag and natural pozzolans in concrete (Norway) (1989), vol. 2, pp. 1429-1466.

(5) Deja, J. y Malolepszy, J.: “Resistance of alkali-activated slag mortars to chlorine solution”, 3rd Inter. Conf. on fly-ash, silica fume, slag and natural pozzolans in concrete (Norway) (1989), vol. 2, SP 114-75, pp. 1547-1563.

(6) Bakharev, T., Sanjayan, J. G. y Cheng, Y. B.: “Resistance of alkali-activated slag concrete to acid attack”, Cem. Concr. Res., vol. 33 (2003), pp. 1607-1611. doi:10.1016/S0008-8846(03)00125-X

(7) Puertas, F., Amat, T., Fernández-Jiménez, A. y Vázquez, T.: “Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres”, Cem. Concr. Res., vol. 33 (2003), pp. 2031-2036. doi:10.1016/S0008-8846(03)00222-9

(8) Krivenko, P. V.: “Alkaline cements and concretes: problems of durability”, 2nd Intern. Conf. Alkaline Cements and Concretes (Kiev) (1999), pp. 3-43.

(9) Gutiérrez, R. De, Maldonado, J. y Gutiérrez, C.: “Resistencia a temperaturas elevadas de escorias activadas alcalinamente”, Mater. Construcc., vol. 54, nº 276 (2004).

(10) Fernández-Jiménez, A., Puertas, F., Sobrados, I. y Sanz, J.: “Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator”, J. Am. Ceram. Soc., 86 (8), (2003), pp. 1389-1394.

(11) Escalante-García, J. I., Fuentes, A. F., Gorokhovsky, A., Fraile-Luna, P. E. y Mendoza-Suárez, G.: “Hydration products and reactivity of blast-furnace slag activated by various alkalis”, J. Am. Ceram. Soc., 86 (12), pp. 2148-2153.

(12) Collins, F. y Sanjayan, J. G.: “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete”, Cem. Concr. Res., vol. 30 (2000), pp. 1401-1406. doi:10.1016/S0008-8846(00)00327-6

(13) Puertas, F., Amat, T. y Vázquez, T.: “Comportamiento de morteros de cementos alcalinos reforzados con fibras acrílicas y de polipropileno”, Mater. Construcc., vol. 50, nº 259 (2000), pp. 69-84.

(14) Miravete, A., Mieres, J. M., Calvo, I., Comino, P., Chminilli, A., Cuartero, J. y Tolosa, N.: “Comportamiento de la fibra de vidrio AR para aplicaciones estructurales en la construcción”, Mater. Construcc., vol. 55, nº 280 (2005), pp. 63-69.

(15) Rincón, J. M., Romero, M., Hernández-Crespo, M., Talero, R. y García Santos, A.: “Microestructura de un material compuesto basdo en una matriz de cemento reforzado con fibras de polipropileno”, Mater. Construcc., vol. 54, nº 274 (2004), pp. 73-82.

(16) Puertas, F., Fernández-Jiménez, A. y Blanco-Varela, M. T.: “Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate”, Cem. Concr. Res., vol. 34 (2004), pp. 139-148. doi:10.1016/S0008-8846(03)00254-0

(17) Cülfik, M. S. y Özturan, T.: “Effect of elevated temperatures on the residual mechanical properties of high-performance morta”, Cem. Concr. Res., 32 (2002), pp. 809-816. doi:10.1016/S0008-8846(02)00709-3

(18) Palacios, M.: Empleo de aditivos orgánicos en la mejora de las propiedades de cementos y morteros de escoria activada alcalinamente. PhD. Tesis Doctoral. Universidad Autónoma de Madrid, 2006.

(19) Toman, J., Drchalova, J., Podebradska, J., Cerny, R. y Rovnanikova, P., “High temperature behavior of cement based composites”, Proceedings of the International Conference on Building Physics, 2nd Antwerpen, Belgium, Edited by: Carmeliet, Hens, Vermeir, 2003, pp. 101-107.

(20) Rovnanik, P., Bayer, P. y Rovnanikova, P., “Properties of alkali-activated aluminosilicate composite after thermal treatment”, 2nd Non Traditional Cement and Concrete, Brno (Czech Republic), 2005, pp. 48-54.




Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es