Materiales de Construcción, Vol 63, No 309 (2013)

Characterization of backfill mortars used in different tunnels in Spain


https://doi.org/10.3989/mc.2012.03611

S. Cavalaro
Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Barcelona, Spain

A. Aguado
Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. Universidad Politécnica de Barcelona, Spain

Abstract


The main objective of this paper is to compare typical backfill mortars used in Spanish tunnels to fill the annular void left between the lining and the ground by the TBM. Initially, a new experimental program is outlined using material corresponding to 6 mixes from 4 tunnels. The results obtained indicate a considerable difference in the density and in the rheological properties of the mixes tested. According to the estimations performed, this leads to a difference of up to 67% on the potency required from the pumps to inject the material. Furthermore, a correlation between the fine content and the rheological properties of the mix was observed. This correlation may be a practical tool to control and modify the performance of the mortars directly in the worksite.

Keywords


mortar; yield stress; viscosity; tunnel boring machine; tunnel

Full Text:


PDF

References


(1) Széchy, K.: The art of tunnelling, p. 891, Budapest: Akadémiai Kiadó, (1970).

(2) Varios Autores: Ingeo de túneles, Serie: Ingeniería de Túneles, Libro 1, Madrid, España : Entorno Grafico, ISBN 84-921708-5-9, (1999).

(3) EFNARC: Specification and guidelines for the use of specialist products for soft ground tunnelling, European Federation of Producers and Contractors of Specialist Products for Structures, (2005).

(4) Cavalaro, S. H. P.: Evaluación de aspectos tecnológicos en túneles construidos con tuneladora y dovelas prefabricadas de hormigón, Tesis Doctoral, p. 320, E.T.S. Ingenieros de Caminos, Canales y Puertos. U.P.C. Barcelona, Spain, (2009).

(5) Blom, C. B. M.: Design philosophy of concrete linings for tunnels in soft soils, p. 184, Delft, The Netherlands : Delft University Press, (2002).

(6) Ding, W. Q.; Yue, Z. Q.; Tham, L. G.; Zhu, H. H.; Lee, C. F.; Hashimoto, T.: “Analysis of shield tunnel”, John Wiley and Sons Ltd. International Journal for Numerical and Analytical Methods in Geomechanics. (2004), vol. 28, nº1, pp. 59.

(7) Bezuijen, A.; Talmon, A.: “Grout properties and their influence on backfill grouting”, Proceedings of the 5th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, p. 187, Amsterdam, (2005).

(8) Bertomeu, J.: Libro de ruta para un ingeniero de turno de una tuneladora EPB, TFC presentado a la ETSICCPB, Barcelona, (2010).

(9) López, M. R.: Desarrollo de un dispositivo para la determinación de la aptitud del hormigón para el bombeo, TFC presentado a la ETSICCPB, (2011).

(10) Bezuijen, A.; Talmon, A. M.: “Grout, the foundation of a bored tunnel”, Thomas Telford Services Ltd, BGA International Conference on Foundations, Innovations, Observations, Design and Practice, p. 129, Dundee, United Kingdom, (2003).

(11) Talmon, A. M.; Aanen, L.; van der Zon, W. H.: “Stromingsgedrag groutinjectie Delft Cluster”, Delft Cluster, External research report. (2002).

(12) Talmon, A. M.; Bezuijen, A.: “Grouting the tail void of bored tunnels: the role of hardening and consolidation of grouts”, 5th International Symposium Geotechnical Aspects of Underground Construction in Soft Ground, Amsterdam, The Netherlands, 15-17 de junio de 2005. ISSMGE-TC28, (2005).

(13) Wallevik, J. E.: Rheology of particle suspensions, Doctoral Thesis, Trondheim, Norway : The Norwegian University of Science and Technology (NTNU), (2003).

(14) Blom, C. B. M.; Lokhorst, S.J.; A., Slenders B. M.; A., Kwast E.: Influences of physical grout flow around bored tunnels, Geotechnical Aspects of Underground Construction in Soft Ground, p. 253, London, England : Taylor & Francis Group, (2006).

(15) Bezuijen, A.; Talmon, A.M.: “Grout pressure measurements during tunnelling”, ITA Conference. Amsterdam : s.n., (2003).

(16) Bezuijen, A.; Talmon, A.M.: “Grout pressures around a tunnel lining. Influence of grout consolidation and loading on lining”, Tunnelling and Underground Space Technology, vol. 19, 4-5 (2004), pp. 443.

(17) Bezuijen, A.; Talmon, A. M.; Kaalberg, F. J.; Plugge, R.: “Field measurements of grout pressures during tunnelling of the Sophia Rail Tunnel”, Soils and Foundations, vol. 44, nº 1 (2004), pp. 39. http://dx.doi.org/10.3208/sandf.44.39

(18) Cavalaro, S. H. P.; Blom, C. B. M.; Walraven, J. C.; Aguado, A.: “Structural analysis of contact deficiencies in segmented lining”, Tunnelling and Underground Space Technology, (2011). http://dx.doi.org/10.1016/j.tust.2011.05.004

(19) Debrauwer, R.: “Groutbelasting op een tunnellining”, Eindrapport, Delft:TU Delft, (2002).

(20) Wallevik, J. E: Rheology of Particle Suspensions - Fresh Concrete, Mortar and Cement Paste with Various Types of Lignosulfonates, Ph.D. thesis, Department of Structural Engineering, The Norwegian University of Science and Technology, ISBN 82-471-5566-4, ISSN 0809-103X, pp. 401, (2003).

(21) Schowalter, W. R.; Christensen, G.: “Toward a rationalization of the slump test for fresh concrete: comparisons of calculations and experiments”, Journal of Rheology, vol. 42, nº 4 (1998), pp. 865. http://dx.doi.org/10.1122/1.550905

(22) Shi, Y-X.; Matsui, I.; Guo, Y-J.: “A study on the effect of fine mineral powders with distinct vitreous contents on the fluidity and rheological properties of concrete”, Cement and Concrete Research, vol. 34, nº 8 (2004), pp. 1381. http://dx.doi.org/10.1016/j.cemconres.2003.12.031

(23) Ferraris, C. F.; De Larrard, F.: “Modified Slump Test to Measure Rheological Parameters of Fresh Concrete”, Cement, Concrete and Aggregates, vol. 20, nº 2 (1998), pp. 241. http://dx.doi.org/10.1520/CCA10417J

(24) Logos, C.; Nguyen, Q. D.: “Effect of particle size on the flow properties of a South Australian coal-water slurry”, Powder Technology, vol. 88, nº 1 (1996), pp. 55. http://dx.doi.org/10.1016/0032-5910(96)03103-8

(25) Ota, M.; Miyamoto, T.: “Optimum particle size distribution of an electrorheological fluid”, Journal of Applied Physics, vol. 76, nº 9 (1994), pp. 5528. http://dx.doi.org/10.1063/1.357154

(26) White, F. M.: “Avoidance of blockages in concrete pumping process”, ACI Materials Journal, vol. 102, 3 (2005), 183 p.

(27) Río, O.; Rodríguez, A.; Nabulsi, S.; Alvarez, M.: “Pumping Quality Control Method Based on Online Concrete Pumpability Assessment”, ACI Materials Journal, vol. 108, 4 (2011), pp. 423.

(28) Kaplan, D.; De Larrard, F.; Sedran, T.: Fluid Mechanics, Mcgraw-Hill Series in Mechanical Engineering, Edición 7 (2010), pp. 896.

(29) Kaplan, D.; de Larrard, F.; Sedran, T.: “Design of concrete pumping circuit”, ACI Materials Journal, vol. 102, nº 2 (2005), pp. 110.

(30) Geankoplis, C. J.: “Principles of momentum transfer and applications”, Transport process and unit operations. (1995). pp. 114.

(31) Belem, T.; Benzaazoua, M.: “An overview of the use of paste backfill technology as a ground support method in cut-and-fill mines”, In: 5th International Symposium on ground support in mining and underground construction, Perth, Western Australia, Australia : s.n., 28-30 de September de 2004 (2004). pp. 637.




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es