Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials

Authors

  • O. Galao Universidad de Alicante
  • E. Zornoza Universidad de Alicante
  • F. J. Baeza Universidad de Alicante
  • A. Bernabeu Universidad de Alicante
  • P. Garcés Universidad de Alicante

DOI:

https://doi.org/10.3989/mc.2012.01211

Keywords:

carbon nanofibers, cement, mechanical properties, durability, corrosion

Abstract


This paper reports on recent work that is directed at studying the changes in the mechanical properties of Portland cement based mortars due to the addition of carbon nanofiber (CNF). Both flexural and compression strength has been determined and related to the CNF addition to the mix, to the curing time and to the porosity and density of the matrix. Also, corrosion of embedded steel rebars in CNF cement pastes exposed to carbonation and chloride attacks has been investigated. The increase in CNF addition implies higher corrosion intensity and higher levels of mechanical properties.

Downloads

Download data is not yet available.

References

(1) Chen, P. W.; Chung, D. D. L.: “Carbon fiber reinforced concrete as a smart material capable of non-destructive flaw detection”, Smart Materials and Structures, 2: 1 (1993), pp. 22-30. http://dx.doi.org/10.1088/0964-1726/2/1/004

(2) Chen, P. W; Chung, D. D. L.: “Concrete as a new strain/stress sensor”, Composites Part B-Engineering, 27B: 1 (1996), pp. 11-23. http://dx.doi.org/10.1016/1359-8368(95)00002-X

(3) Chen P. W.; Chung, D. D. L.: “Improving the Electrical Conductivity of Composites Comprised of Short Conducting Fibers in a Non-Conducting Matrix: the Addition of a Non-Conducting Particulate Filler”, Journal of Electronic Materials, 24: 1 (1995), pp. 47-51. http://dx.doi.org/10.1007/BF02659726

(4) Chung, D. D. L.: “Cement-Matrix Composites for Thermal Engineering”, Applied Thermal Engineering, 21 (2001), pp. 1607-1619. http://dx.doi.org/10.1016/S1359-4311(01)00043-6

(5) Chung, D. D. L.: “Cement-Matrix Composites for Smart Structures”, Smart Materials and Structures, 9: 4 (2000), pp. 389-401. http://dx.doi.org/10.1088/0964-1726/9/4/302

(6) Chung, D. D. L.: “Cement-Matrix Structural Nanocomposites”, Metals and Materials International, 10: 1 (2004), pp. 55-67. http://dx.doi.org/10.1007/BF03027364

(7) Chung, D. D. L.: “Electrical Conduction Behavior of Cement-Matrix Composites”, Journal of Materials Engineering and Performance, 11: 2 (2002), pp. 194-204. http://dx.doi.org/10.1361/105994902770344268

(8) Chung, D. D. L.: “Functional Properties of Cement-Matrix Composites”, Journal of Materials Science, 36 (2001), pp. 1315-1324. http://dx.doi.org/10.1023/A:1017522616006

(9) Chung, D. D. L.: “Piezoresistive cement-based materials for strain sensing”, Journal of Intelligent Materials Systems and Structures, 13: 9 (2002), pp. 599-609. http://dx.doi.org/10.1106/104538902031861

(10) Muthusamy, S.; Wang, S.; Chung, D. D. L.: “Unprecedented Vibration Damping with High Values of Loss Modulus and Loss Tangent, Exhibited by Cement-Matrix Graphite Network Composite”, Carbon, 48: 5 (2010), pp. 1457-1464 (2010).

(11) Zornoza, E.; Catalá, G.; Jiménez, F.; Andión, L. G.; Garcés, P.: “Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash”, Mater. Construcc., 60: 300 (2010), pp. 21-32.

(12) Alcaide, J. S.; Alcocel, E. G.; Puertas, F.; Lapuente, R.; Garcés, P.: “Carbon fibre-reinforced, alkali-activated slag mortars”, Mater. Construcc., 57: 288 (2007), pp. 33-48.

(13) Alcaide, J. S.; Alcocel, E. G.; Vilaplana, E.; Cazorla, D.; Garcés. P.: “Mechanical characterization of Portland cement mortars containing petroleum or coal tar”, Mater. Construcc., 57: 287 (2007), pp. 53-62.

(14) Li, J.; Vergne, M. J.; Mowles, E. D. et al.: “Surface functionalization and characterization of graphitic carbon nanofibers (GCNFs)”, Carbon, 43 (2005), pp. 2883-2893. http://dx.doi.org/10.1016/j.carbon.2005.06.003

(15) Nasibulina, I.; Anoshkin, V.; Shandakov, D. et al.: “Direct Synthesis of Carbon Nanofibers on Cement Particles”, Transportation Research Record, 2142 (2010), pp. 96-101. http://dx.doi.org/10.3141/2142-14

(16) Sánchez, F.; Ince, C.: “Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites”, Composites Science and Technology, 69 (2009), pp. 1310-1318. http://dx.doi.org/10.1016/j.compscitech.2009.03.006

(17) Yazdanbakhsh, A.; Grasley, Z.; Tyson, B. et al.: “Distribution of carbon nanofibers and nanotubes in cementitious composites”, Transportation Research Record: Journal of the Transportation Research Board (2010), pp. 89-95.

(18) Metaxa, Z. S.; Konsta-Gdoutos, M. S.; Shah, S. P.: “Carbon Nanofiber-Reinforced Cement-Based Materials”, Transportation Research Record, 2142 (2010), pp. 114-118. http://dx.doi.org/10.3141/2142-17

(19) Kang, I. P.; Heung, Y. Y.; Kim, J. H.; Lee, J. W.; Gollapudi, R.; Subramaniam, S.; Narasimhadevara, S.; Hurd, D.; Kirikera, G. R.; Shanov, V.; Schulz, M. J.; Shi, D. L.; Boerio, J.; Mall, S.; Ruggles-Wren, M.: “Introduction to carbon nanotube and nanofiber smart materials”, Composites Part B-Engineering, 37: 6 (2006), pp. 382-394. http://dx.doi.org/10.1016/j.compositesb.2006.02.011

(20) Gay, C.; Sánchez, F: “Performance of Carbon Nanofiber-Cement Composites with a High-Range Water Reducer”, Transportation Research Record, 2142 (2010), pp. 109-113. http://dx.doi.org/10.3141/2142-16

(21) Sánchez, F.; Zhang, L.; Ince, C.: “Multi-scale performance and durability of carbon nanofiber/cement composites”, in: Bittnar, Z.; Bartos, P. J. M.; Nemecek, J. et al. (eds.): Nanotechnology in construction: proceedings of the NICOM3 (3rd International Symposium on Nanotechnology in Construction) (2009), Prague, Czech Republic, pp. 345-350.

(22) Bortz, D. R.; Merino, C.; Martín-Gullón, I.: “Carbon nanofibers enhance the fracture toughness and fatigue performance of a structural epoxy system”, Composites Science and Technology, 71 (2011), pp. 31-38. http://dx.doi.org/10.1016/j.compscitech.2010.09.015

(23) Zornoza, E.; Garcés, P.; Payá, J.: “Corrosion rate of steel embedded in blended Portland and fluid catalytic cracking catalyst residue (FC3R) cement mortars”, Mater. Construcc., 58: 292 (2008), pp. 27-43.

(24) Zornoza E.; Payá, J.; Garcés, P.: “Chloride-induced corrosion of steel embedded in mortars containing fly ash and spent cracking catalyst”, Corrosion Science, 50: 6 (2008), pp. 1567-1575. http://dx.doi.org/10.1016/j.corsci.2008.02.001

(25) Alcocel, E. G.; Garcés, P.; Martínez, J. J.; Payá, J.; Andión, L. G.: “Effect of sewage sludge ash (SSA) on the mechanical performance and corrosion levels of reinforced Portland cement mortars”, Mater. Construcc., 56: 1 (2006), pp. 31-43.

(26) Zornoza, E.; Payá, J.; Garcés, P.: “Carbonation rate and reinforcing steel corrosion rate of OPC/FC3R/FA mortars under accelerated conditions”, Advances in Cement Research, 21: 1 (2009), pp. 15-22. http://dx.doi.org/10.1680/adcr.2007.00008

(27) Zornoza, E.; Garcés, P.; Payá, J.; Climent, M. A.: “Improvement of the chloride ingress resistance of OPC mortars by using spent cracking catalyst”, Cem. Concr. Res., 39: 2 (2009), pp. 126-139. http://dx.doi.org/10.1016/j.cemconres.2008.11.006

(28) Stern, M.; Geary, A. L.: “A theoretical analysis of the shape of polarization curves”, Journal of Electrochemical Society, 104 (1957) p. 56. http://dx.doi.org/10.1149/1.2428496

(29) Andrade, C.; González, J. A.: “Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements”, Werkst. Korros., 29 (1978) 515. http://dx.doi.org/10.1002/maco.19780290804

Downloads

Published

2012-09-30

How to Cite

Galao, O., Zornoza, E., Baeza, F. J., Bernabeu, A., & Garcés, P. (2012). Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Materiales De Construcción, 62(307), 343–357. https://doi.org/10.3989/mc.2012.01211

Issue

Section

Research Articles

Most read articles by the same author(s)

1 2 > >>