Materiales de Construcción, Vol 62, No 308 (2012)

High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends

S. A. Bernal
Universidad del Valle - University of Melbourne, Australia

R. Mejía de Gutiérrez
Universidad del Valle, Colombia

F. Ruiz
Universidad del Valle, Colombia

H. Quiñones
Universidad del Valle, Colombia

J. L. Provis
University of Melbourne, Australia


This paper assesses the performance of mortars and concretes based on alkali activated granulated blastfurnace slag (GBFS)/metakaolin (MK) blends when exposed to high temperatures. High stability of mortars with contents of MK up to 60 wt.% when exposed to 600 °C is identified, with residual strengths of 20 MPa following exposure to this temperature. On the other hand, exposure to higher temperatures leads to cracking of the concretes, as a consequence of the high shrinkage of the binder matrix and the restraining effects of the aggregate, especially in those specimens with binders containing high MK content. A significant difference is identified between the water absorption properties of mortars and concretes, and this is able to be correlated with divergences in their performance after exposure to high temperatures. This indicates that the performance at high temperatures of alkali-activated mortars is not completely transferable to concrete, because the systems differ in permeability. The differences in the thermal expansion coefficients between the binder matrix and the coarse aggregates contribute to the macrocracking of the material, and the consequent reduction of mechanical properties.


alkali-activated binders; high temperatures; granulated blast-furnace slag; metakaolin; mechanical properties

Full Text:



(1) Juenger, M. C. G.; Winnefeld, F.; Provis, J.; Ideker, J. L.: "Advances in alternative cementitious binders", Cem. Concr. Res., 41 (2011), pp. 1232-1243.

(2) Shi, C.; Fernández-Jiménez, A.; Palomo, A.: "New cements for the 21st century: The pursuit of an alternative to Portland cement", Cement and Concrete Research, 41 (2011), pp. 750-763.

(3) Duxson, P.; Provis, J. L.; Lukey, G. C.; van Deventer, J. S. J.: "The role of inorganic polymer technology in the development of 'Green concrete'", Cem. Concr. Res., 37 (2007), pp. 1590-1597.

(4) Duxson, P.; Provis, J. L.: "Designing precursors for geopolymer cements", Journal of the American Ceramic Society, 91 (2008), pp. 3864-3869.

(5) Alonso, S.; Palomo, A.: "Alkaline activation of metakaolin and calcium hydroxide mixtures: 'Influence of temperature, activator concentration and solids ratio'", Materials Letters, 47 (2001), pp. 55-62.

(6) Duxson, P.; Fernández-Jiménez, A.; Provis, J. L.; Lukey, G. C.; Palomo, A.; van Deventer, J. S. J.: "Geopolymer technology: The current state of the art", Journal of Materials Science, 42 (2007), pp. 2917-2933.

(7) Granizo, M. L.; Blanco-Varela, M. T.; Palomo, A.: "Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry", Journal of Materials Science, 35 (2000), pp. 6309-6315.

(8) van Deventer, J. S. J.; Provis, J. L.; Duxson, P.: "Technical and commercial progress in the adoption of geopolymer cement", Minerals Engineering, 29 (2012), pp. 89-104.

(9) Barbosa, V. F. F.; MacKenzie, K. J. D.: "Synthesis and thermal behaviour of potassium sialategeopolymers", Materials Letters, 57 (2003) 1477-1482.

(10) Barbosa, V. F. F.; MacKenzie, K. J. D.: "Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate", Materials Research Bulletin, 38 (2003), pp. 319-331.

(11) Bernal, S. A.; Rodríguez, E. D.; Mejía de Gutiérrez, R.; Gordillo, M.; Provis, J. L.: "Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends", Journal of Materials Science, 46 (2011), pp. 5477-5486.

(12) Duxson, P.; Lukey, G. C.; van Deventer, J. S. J.: "Thermal evolution of metakaolin geopolymers: Part 1 – Physical evolution", Journal of Non-Crystalline Solids, 352 (2006), pp. 5541-5555.

(13) Bernal, S. A.; Bejarano, J.; Garzón, C.; Mejía de Gutiérrez, R.; Delvasto, S.: Rodríguez, E. D.: "Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites, Composites Part B", Engineering, 43 (2012), pp. 1919-1928.

(14) Kong, D. L. Y.; Sanjayan, J. G.; Sagoe-Crentsil, K.: "Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures", Journal of Materials Science, 43 (2008), pp. 824-831.

(15) Cheng, T. W.; Chiu, J. P.: "Fire-resistant geopolymer produced by granulated blast furnace slag", Minerals Engineering, 16 (2003), pp. 205-210.

(16) Guerrieri, M.; Sanjayan, J.; Collins, F.: "Residual compressive behavior of alkali-activated concrete exposed to elevated temperatures", Fire and Materials, 33 (2009), pp. 51-62.

(17) Zuda, L.; Drchalová, J.; Rovnaník, P.; Bayer, P.; Kersˇner, Z.; Cˇern’y, R.: "Alkali-activated aluminosilicate composite with heatresistant lightweight aggregates exposed to high temperatures: Mechanical and water transport properties", Cem. Concr. Comp., 32 (2010), pp. 157-163.

(18) Puertas, F.; Gil-Maroto, A.; Palacios, M.; Amat, T.: "Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties", Mater. Construcc., 56 (2006), pp. 79-90.

(19) Mejía de Gutiérrez, R.; Maldonado, J.; Gutiérrez, C.: "Resistencia a temperaturas elevadas de escoria activadas alcalinamente", Mater. Construcc., 54 (2004), pp. 87-92.

(20) Duxson, P.; Provis, J. L.; Lukey, G. C.; Mallicoat, S. W.; Kriven, W. M.; van Deventer, J. S. J.: "Understanding the relationship between geopolymer composition, microstructure and mechanical properties", Colloids and Surfaces A - Physicochemical and Engineering Aspects, 269 (2005), pp. 47-58.

(21) Bernal, S. A.; Mejía de Gutiérrez, R.; Rose, V.; Provis, J. L.: "Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags", Cem. Concr. Res., 40 (2010), pp. 898-907.

(22) Hewlett, P. C.: Lea's Chemistry of Cement and Concrete, 4th Ed., Elsevier, Oxford, UK, 1998. PMCid:1853002

(23) Van Riessen, A.; Rickard, W.; Sanjayan, J.: "Thermal properties of geopolymers", in: J. L. Provis, J. S. J. van Deventer (eds.), Geopolymers: Structures, Processing, Properties and Industrial Applications, Woodhead, Cambridge, UK, 2009, pp. 317-344.

(24) Bernal, S. A.; Mejia de Gutiérrez, R.; Provis, J. L.: "Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends", Constr. Build. Mater., 33 (2012), pp. 99-108.

(25) Rodríguez, E.; Mejía de Gutiérrez, R.; Bernal, S.; Gordillo, M.: "Effect of the SiO2/Al2O3 and Na2O/SiO2 ratios on the properties of geopoly merbasedon MK, Revista de la Facultad de Ingeniería de la Universidad de Antioquia, 49 (2009), pp. 30-40.

(26) Bernal, S. A.; Mejía de Gutiérrez, R.; Pedraza, A. L.; Provis, J. L.; Rodríguez, E. D.; Delvasto, S.: "Effect of binder content on the performance of alkali-activated slag concretes", Cem. Concr. Res., 41 (2011), pp. 1-8.

(27) Yip, C. K.; Lukey, G. C.; van Deventer, J. S. J.: "The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation", Cem. Concr. Res., 35 (2005), pp. 1688-1697.

(28) Buchwald, A.; Hilbig, H.; Kaps, C.: "Alkali-activated metakaolin-slag blends - Performance and structure in dependence on their composition", Journal of Materials Science, 42 (2007), pp. 3024-3032.

(29) García Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A.; Macphee, D. E.: "Effect on fresh C-S-H gels of the simultaneous addition of alkali and aluminium", Cem. Concr. Res., 40 (2010), pp. 27-32.

(30) Provis, J. L.; Myers, R. J.; White, C. E.; Rose, V.; van Deventer, J. S. J.: "X-ray microtomography shows pore structure and tortuosity in alkali-activated binders", Cem. Concr. Res., (2012) DOI: 10. 1016/j. cemconres. 2012. 1003. 1004.

(31) Duxson, P.; Lukey, G. C.; Separovic, F.; van Deventer, J. S. J.: "The effect of alkali cations on aluminum incorporation in geopolymeric gels", Industrial & Engineering Chemistry Research, 44 (2005), pp. 832-839.

(32) Duxson, P.; Lukey, G. C.; van Deventer, J. S. J.: "The thermal evolution of metakaolin geopolymers: Part 2 – Phase stability and structural development", Journal of Non-Crystalline Solids, 353 (2007), pp. 2186-2200.

(33) Rowles, M.; O'Connor, B.: "Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite", Journal of Materials Chemistry, 13 (2003), pp. 1161-1165.

(34) Welche, P. R. L.; Heine, V.; Dove, T.: "Negative thermal expansion in beta-quartz", Phy Chem Miner, 26 (1998), pp. 63-77.

(35) Halpál, M.; Török, Á.: "Mineralogical and colour change of quartz sandstones by heat", Environmental Geology, 46 (2004), pp. 311-322.

(36) Zuda, L.; Cˇern’y, R.: "Measurement of linear thermal expansion coefficient of alkali-activated aluminosilicate composites up to 1000 ºC ", Cem. Concr. Comp., 31 (2009), pp. 263-267.

(37) Rickard, W. D. A.; van Riessen, A.; Walls, P.: "Thermal character of geopolymers synthesized from Class F fly ash containing high concentrations of iron and α-quartz", International Journal of Applied Ceramic Technology, 7 (2010), pp. 81-88.

(38) White, C. E.; Provis, J. L.; Proffen, T.; Riley, D. P.; van Deventer, J. S. J.: "Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation", Journal of Physical Chemistry A, 114 (2010), pp. 4988-4996. PMid:20297842

(39) Alarcon-Ruiz, L.; Platret, G.; Massieu, E.; Ehrlacher, A.: "The use of thermal analysis in assessing the effect of temperature on a cement paste", Cem. Concr. Res., 35 (2005), pp. 609-613.

(40) Fernández-Jiménez, A.; Puertas, F.: "Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator", Journal of the American Ceramic Society, 86 (2003), pp. 1389-1394.

(41) Bernal, S. A.; Provis, J. L.; Mejía de Gutiérrez, R.; Rose, V.: "Evolution of binder structure in sodium silicate-activated slagmetakaolin blends", Cem. Concr. Comp., 33 (2011), pp. 46-54.

(42) Wang, S. D.; Scrivener, K. L.: "Hydration products of alkali-activated slag cement", Cem. Concr. Res., 25 (1995), pp. 561-571.

(43) Chan, Y. N.; Luo, X.; Sun, W.: "Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 ºC", Cem. Concr. Res., 30 (2000), pp. 247-251.

(44) Duxson, P.; Lukey, G. C.; van Deventer, J. S. J.: "Evolution of gel structure during thermal processing of Na-geopolymer gels", Langmuir, 22 (2006), pp. 8750-8757. PMid:17014113

(45) Duxson, P.; Lukey, G. C.; van Deventer, J. S. J.: "Physical evolution of Na-geopolymer derived from metakaolin up to 1000 ºC", Journal of Materials Science, 42 (2007), pp. 3044- 3054.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support