Materiales de Construcción, Vol 62, No 308 (2012)

Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

M. Palacios
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC) - Institute for Building Materials. ETHZ, Spain

P. Bowen
École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

M. Kappl
Max Planck Institute for Polymer Research, Germany

H. J. Butt
Max Planck Institute for Polymer Research, Germany

M. Stuer
École Polytechnique Fédérale de Lausanne, Germany

C. Pecharromán
Instituto de Ciencias de Materiales de Madrid (ICMM-CSIC), Spain

U. Aschauer
Materials theory, ETHZ, Switzerland

F. Puertas
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC), Spain


The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomic force microscopy has been measured. To model the interparticle force interactions an effective Hamaker constant was computed from dielectric properties measured on a dense slag sample produced by spark plasma sintering. The obtained results conclude that the dispersion mechanism for all the superplasticizers studied in the present work is mainly dominated by the steric repulsion. Results were then used in a yield stress model, YODEL, to predict the yield stress with and without the superplasticizers. Predictions of the yield stress agreed well with experimental results.


dispersion; ground granulated blast furnace slag; surfaces; suspensions; rheology

Full Text:



(1) Mollah, M. Y. A.; Adams, W. J.; Schennach, R.; Cocke, D. L.: "A review of cement - superplasticizer interactions and their models", Adv. Cem. Res. (2000); 12, pp. 153-161.

(2) Houst, Y.; Bowen, P.; Siebold, A.: Some basic aspects of the interaction between cement and superplasticizers. Innovations and developments in Concrete Materials and Construction. Ed. R. K. Dhir, P. C. Hewlett, L. J. Csetenvi; (2002), pp. 225-234.

(3) Alonso, M. M.; Palacios, M.; Puertas, F.; de la Torre, A. G.; Aranda, M. A. G.: "Effect of polycarboxylate admixture structure on cement paste rheology", Mater. Construcc. (2007); 57, n. 286, pp. 65-81.

(4) Flatt, R.; Houst, Y.: "A simplified view on chemical effects perturbing the action of superplasticizers", Cem. Concr. Res. (2001); 31, pp. 1169-1176.

(5) Zingg, A.; Winnefeld, F.; Holzer, L.; Pakusch, J.; Becker, S.; Gauckler, L.: "Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases", J. Coll. Interface Sci. (2008); 323, pp. 301-312. PMid:18502439

(6) Uchikawa, H.; Hanehara, S.; Sawaki, D.: "The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture", Cem. Concr. Res. (1997); 27, pp. 37-50.

(7) Flatt, R.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E.: "Conformation of Adsorbed Comb Copolymer Dispersants", Langmuir (2009); 25, pp. 845-855. PMid:19086886

(8) Houst, Y. F.; Bowen, P.; Perche, F.; Kauppi, A.; Borget, P.; Galmichei, L.; Le Meins, J.-F.; Lafuma, F.; Flatt, R. J.; Schober, I.; Banfill, P. F. G.; Swift, D. S.; Myrvold, B. O.; Petersen, B. G.; Reknes, K.: "Design and function of novel superplasticizers for more durable high performance concrete (superplast project)", Cem. Concr. Res. (2008); 38, pp. 1197-1209.

(9) Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J.; Wu, S.; Shen, J.: "Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions", J. Coll. Interface Sci. (2009); 336, pp. 624-633. PMid:19500795

(10) Sánchez, R.; Palacios, M.; Puertas, F.: "Characteristics and propierties of oil-well cements additioned with blast furnace slag", Mater. Construcc. vol. 61, n. 302, (2011), pp.

(11) Puertas, F.: "Cementos de Escoria Activados Alcalinamente: Situación Actual y Perspectivas de Futuro", Mater. Construc. (1995); 45, n. 239, pp. 53-64.

(12) Palacios, M.; Houst, Y. F.; Bowen, P.; Puertas, F.: "Adsorption of superplasticizer admixtures on alkali-activated slag pastes", Cem. Concr. Res. (2009); 39, pp. 670-677.

(13) Palacios, M.; Banfill, P. F. G.; Puertas, F.: "Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture", ACI Materials Journal (2008); 105, pp. 140-148.

(14) Bakharev, T.; Sanjayan, J. G.; Cheng, Y.-B.: "Effect of admixtures on properties of alkali-activated slag concrete", Cem. Concr. Res. (2000); 30, pp. 1367-1374.

(15) Palacios, M.; Puertas F.: "Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars", Cem. Concr. Res. (2005; 35, pp. 1358-1367.

(16) Palacios, M.; Puertas, F.: "Stability of superplasticizer and Shrinkage-reducing admixtures in high basic media", Mater. Construcc. (2004); 54, n. 276, pp. 65-86.

(17) Flatt, R. J.; Bowen, P.: "Yodel: A Yield Stress Model for Suspensions", J. Am. Ceram. Soc. (2006); 89 [4], pp. 1244–1256.

(18) Hamaker software download; - see also reference 28

(19) Flatt, R. J.: "Dispersion forces in cement suspensions", Cem. Concr. Res. (2004); 34, pp. 399-408.

(20) Palacios, M.; Sierra, C.; Puertas, F.: "Techniques and methods of characterization of admixtures for concrete", Mater Construc. (2003): vol. 53, n. 269, pp. 89-105.

(21) Stark, R.: Surface layer formation in polymer melts and in solutions, PhD thesis, University of Mainz, (2007).

(22) Stark, R.; Nicoleau, L.; Hu.bsch, C.; Kappl, M.; Butt, H. J.: 3rd Meeting of the German Colloid Society, Mainz, Germany, (2007).

(23) Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J.: "Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements", J. Coll. Interface Sci. (2010); 347, pp. 15-24. PMid:20356605

(24) Kauppi, A.; Andersson, K. M.; Bergström, L.: "Probing the effect of superplasticizer adsorption on the surface forces using the colloidal probe AFM technique", Cem. Concr. Res. (2005); 35, pp. 133-140.

(25) Díaz-Benito, B.; Velasco, F.; Guzmán, S.; Calabrés, R.: "AFM study of steel corrosion in aqueous solutions in concrete", Mater. Construcc., vol 61, nº 301, (2011), pp. 27-37.

(26) Bowen, P.; Carry, C.; Luxembourg, D.; Hofmann, H.: "Colloidal processing and sintering of nanosized transition aluminas" Powder Technology, (2005); 157, pp. 100-107.

(27) Stuer, M.; Zhao, Z.; Aschauer, U.; Bowen, P.: "Transparent polycrystalline alumina using spark plasma sintering: Effect of Mg, Y and La doping", J. Eur Ceram Soc. (2010); 30, pp. 1335-1343.

(28) Pederson, H. G.; Bergström, L.: "Forces Measured between Zirconia Surfaces in Poly(acrylic acid) Solutions", J. Am. Ceram. Soc. (1999); 82 (5), pp. 1137-1145.

(29) Butt, H.-J.; Cappella, B.; Kappl, M.: "Force measurements with the atomic force microscope: Technique, interpretation and applications", Surface Science Reports (2005); 59, pp. 1-152.

(30) Pecharromán, C.; Iglesias, J. E.: "A method for the determination of infrared optical constants from reflectance measurements on powdered samples", J. Phys. Condens Matter. (1994); 6, pp. 7125-7141.

(31) Russel, W. B.; Saville, D. A.; Schowalter, W. R.: Colloidal Dispersions. Cambridge Press, Cambridge, U.K., (1985).

(32) Aschauer, U.; Burgos-Montes, O.; Moreno, R.; Bowen, P.: "Hamaker 2: A toolkit for the calculation of particle interactions and suspension stability and its application to mullite synthesis by colloidal methods", J. Dispersion Science Technology, (2011); 32(4), pp. 470-479.

(33) Song, S.; Sohn, D.; Jennings, H. M.; Mason, T. O.: "Hydration of alkali-activated ground granulated blast furnace slag", J. Mat. Scien. (2000); 35, pp. 249-257.

(34) Lewis, J. A.; Matsuyama, H.; Kirby, G.; Morissette, S.; Young, J. F.: "Polyelectrolyte Effects on the Rheological Properties of Concentrated Cement Suspensions", J. Am. Ceram. Soc. (2000); 83 (8), pp. 1905-1913.

(35) Flatt, R. J.; Bowen, P.: "Yield Stress of Multimodal Powder Suspensions: An Extension of the YODEL (Yield Stress mODEL)", J. Am Ceram Soc. (2007); 90 (4), pp. 1038-1044.

(36) Nägele, E.; Schneider U.: "The zeta-potential of blast furnace slag and fly ash", Cem. Concr. Res. (1989); 19, pp. 811-820.

(37) Palacios, M.; Puertas, F.; Bowen, P.; Houst, Y. F.: "Effect of PCs on the rheological properties and hydration process of slag portland cement pastes", J. Mat. Scien. (2009); 44, pp. 2714-2723.

(38) Yilmaz, H.; Sato, K.; Watari, K.: "AFM interaction study of ·-alumina particle and c-sapphire surfaces at high-ionic-strength electrolyte solutions", J. Coll. Interface Sci. (2007); pp. 307: 116-123.

(39) Kerisit, S.; Cooke, D. J.; Marmier, A.; Parker, S. C.: "Atomistic simulation of charged iron oxyhydroxide surfaces in contact with aqueous solution", Chemical Communications (2005); 24, pp. 3027-3029. PMid:15959573

(40) Roussel, N.; Lemaître, A; Flatt, R. J.; Coussot, P.: "Steady state flow of cement suspensions: A micromechanical state of the art", Cem. Concr. Res. (2010); 40, pp. 77-84.

(41) Flatt, R. J.; Bowen, P.: "Electrostatic repulsion between particles in cement suspensions: Domain of validity of linearized Poisson-Boltzmann equation for nonideal electrolytes", Cem. Concr. Res. (2003); 33, pp. 781-791.

(42) Banfill, P. F. G.: A discussion of the papers "Rheological properties of cement mixes by M. Daimon and D. M. Roy". Cem Concr Res (1979); 9, pp. 795-796.

Copyright (c) 2012 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support