Materiales de Construcción, Vol 59, No 293 (2009)

Calcium aluminate cement hydration in a high alkalinity environment


https://doi.org/10.3989/mc.2009.42407

C. Pastor
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Spain

A. Fernández-Jiménez
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Spain

T. Vázquez
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Spain

Á. Palomo
Instituto de Ciencias de la Construcción Eduardo Torroja (CSIC), Spain

Abstract


The present paper forms part of a broader research project that aims primarily to devise new cementitious products via the alkali activation of silico-aluminous materials. This work addresses the possibility of using small percentages of calcium aluminate cement (CAC) as a source of reactive aluminium. For this reason, a preliminary review was needed of the behaviour of CACs in highly alkaline media (2, 8 and 12M NaOH solutions). Two, 28- and 180-day mechanical strength was determined and the reaction products were characterized with XRD and FTIR. The water-hydrated CAC was used as the control.

The results obtained showed that CAC hardening took place much more slowly in highly alkaline media than in water. Nonetheless, the 28-day compressive strength obtained, ≥80MPa. As main reaction products, to ambient temperature and from the two days of cured, cubic aluminate C3AH6), and AH3 polymorphs are formed, instead of the usual hexagonal aluminatos (CAH10 and C2AH8) that are formed in the normal hydrate with water.

Keywords


alkali activation; calcium aluminate cement (CAC); XRD; FTIR

Full Text:


PDF

References


(1) Gartner, E.: “Industrially interesting approaches to ‘low-CO2’ cements”. Cem. Conr. Res. 34 (2004), pp. 1489-1498. doi:10.1016/j.cemconres.2004.01.021

(2) Metha, P. K: “Concrete: structure, properties and materials”. Prentice-Hall,mlnc. Englewood Cliffs, New York (1986).

(3) Palomo, A.; Grutzeck, M. W.; Blanco, M. T.: “Alkali activated fly ashes. A cement for the future”. Cem. Con. Res. 29 (1999), pp. 1323-1329. doi:10.1016/S0008-8846(98)00243-9

(4) Fernández-Jiménez, A.; Palomo, A.: “Characterisation of fly ashes. Potential reactivity as alkaline cements”. Fuel 82 (2003), pp. 2259-2265. doi:10.1016/S0016-2361(03)00194-7

(5) Fernández-Jiménez, A.; Palomo, A.: “Composition and microstructure of alkali activated fly ash binder: Effect of the activator”. Cem. Conr. Res. 35 (2005), pp. 1984-1992. doi:10.1016/j.cemconres.2005.03.003

(6) Fernández-Jiménez, A.; Palomo, A., Sobrados I., Sanz J.: “The role played by the reactive alumina content in the alkaline activation of fly ashes”. Microporous and Mesoporous Materials 91 (2006), pp. 111-119. doi:10.1016/j.micromeso.2005.11.015

(7) Duxson, P.; Fernández-Jiménez, A.; Provis, J. L.; Lukey, G. C.; Palomo, A.; van Deventer, J. S. J.: “Geopolymer technologt: the current state of the art”. J. Mater. Sci. 42 (2007), pp. 2917-2933. doi:10.1007/s10853-006-0637-z

(8) Kovalchuk, G.; Fernández-Jiménez, A.; Palomo, A.: “Alkali-activated fly ash. Relation ship between mecahanical strength gains and initial ash chemistry (Part I)”. Mater. Construcc. 50 (2008), pp. 35-52. doi:10.3989/mc.2008.v58.i291.101

(9) Vázquez, T.; Triviño, F.; Ruiz de Gauna, A.: “Estudio de las transformaciones del cemento aluminoso hidratado. Influencia del anhídrido carbónico, temperatura, humedad y adición de caliza en polvo”. Monogr. Inst. Eduardo Torroja, Constr. Cem. 334 (1976), p. 47.

(10) George, C. M.: “Industrial aluminous cement”. Structure and Performance of Cements. Ed. P. Barnes (1983).

(11) Pérez, M.; Vázquez, T.; Triviño, F.: “Study of stabilized phases in high alumina cement mortars”. Cem. Concr. Res. 13 (1983), pp. 759-770. doi:10.1016/0008-8846(83)90077-7

(12) Tarte, P. “Infra-red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4, tetrahedra and AlO6 octahedra”. Spectrochimica Acta, vol. 23ª (1967), pp. 2127- 2143.

(13) Capmas, A.; Sorrentino, D.; Damidot, D.: “Effect of temperature on setting time of calcium aluminate cements”. Calcium Aluminate Cements. Ed. R.J. Mangabhai (1990).

(14) Barret, P.; Bertrandie, D.: “Hydration of aluminate cements”. Advances in cement and Concrete. Ed. M.W. Grutzeck and S.L. Sarkar (1994).

(15) Garcés, P.; Alcocel, E. G.; Chincón, S.; Andreu, C. G.; Alcaide, J.: “Efect of curing temperature in some hydration characteristics of calcium aluminate cement compared with those of Portland cement”. Cem. Concr. Res. 27 (1997), pp. 1343-1355. doi:10.1016/S0008-8846(97)00136-1

(16) Fernández-Carrasco, L.; Puertas, F.; Blanco-Varela, M. T.; Vázquez, T. “Nuevos avances en la carbonatación del cemento aluminoso, ‘Hidrólisis alcalina’”. Mater. Construcc. 149 (253) (1999), pp. 47-55.

(17) Fernández-Carrasco, L.; Puertas, F.; Blanco-Valera, M. T.; Vázquez, T.; Rius. J.: “Síntesis and crystal structure solution of potassium dawsonite: An intermediate compound in the alkaline hydrolysis of calcium aluminate cements”. Cem. Concr. Res. 32 (2005), pp.

(18) Blanco Varela, M. T.; Martínez-Ramírez, S.; Vázquez, T.; Sánchez-Moral, S.: “Role of alkalis of aggregate origin in the deterioration of CAC concrete”. Cem. Concr. Res. 35 (2005), pp. 1698-1704. doi:10.1016/j.cemconres.2004.08.015

(19) García Alcocel, E.; Garcés, P.; Chinchón, S.: “General study of alkaline hydrolysis in calcium aluminate cement mortars under a broad range of experimental conditions”. Cem. Concr. Res. 30 (2000), pp. 1689-1699. doi:10.1016/S0008-8846(00)00396-3

(20) Fernández-Carrasco, L.: “Procesos de hidratación y carbonatación del cemento de aluminato de calcio; influencia de los álcalis. Alteraciones microestructurales y relación con sus propiedades mecánicas”. Tesis Doctoral, UAM, Facultad de Ciencias (2000).

(21) Puertas, F.; Fernández-Carrasco, L.; Blanco-Valera, M. T.; Vázquez, T.; de la Fuente, A.: “Influence of KOH solution on the hydration or carbonation of high alumina cement mortars” J. Materials Sci 31 (1996), pp. 2819-2827. doi:10.1007/BF00355988

(22) Fernández-Carrasco, L.; Puertas, F.; Blanco-Varela, M. T.; Vázquez, T.: “Carbonation of calcium aluminate cement pastes”. Mater Construcc. 51, Nos 263-264 (2001), pp. 127-136.

(23) Mikuni, A.; Komatsu, R.; Ikeda, K.: “Dissolution properties of some fly ash fillers applying to geopolymeric materials in alkali solution”. J. Mater Sci 42 (2007), pp. 2953-2957. doi:10.1007/s10853-006-0530-9

(24) van Straten, H. A.; Holtkamp, B. T. W.; de Bruyn, P. L.: “Precipitation from supersaturated aluminate solutions: I. Nucleation and growth of solid phases at room temperature”. J. Colloid Interface Sci. 98 (1984), pp. 342-362.

(25) van Straten, H. A.; de Bruyn, P. L.: “Precipitation from supersaturated aluminate solutions”. J. Colloid Interface Sci. 102 (1984), pp. 260-277. doi:10.1016/0021-9797(84)90218-2

(26) Dron, R.; Brivot, F.: “Thermodynamic and kinetic approach to the alkali-silica reaction. Part 1: concepts”. Cem. Concr. Res. 22 (1992), pp. 941-948. doi:10.1016/0008-8846(92)90118-F

(27) Dickinson, S. R.; Henderson, G.E.; McGrath, K. M.: “Controlling the kinetic versus thermodynamic crystallisation of calcium carbonate”. Journal of Crystal Growth 244 (2002), pp. 369-378. doi:10.1016/S0022-0248(02)01700-1

(28) Damidot, D.; Stronach, S.; Kindness, A.; Atkins, M.; Glasser, F. P.: “Thermodynamic investigation of the CaO-Al2O3-CaCO3-H2O closed system at 25 ºC and the influence of Na2O”. Cem. Concr. Res. 24 (1994), pp. 563-572. doi:10.1016/0008-8846(94)90145-7




Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es