Measurement of properties and of the resistance to segregation in heavyweight, self-compacting barite concrete

Authors

  • D. Revuelta Instituto de Ciencias de la Construcción Eduardo Torroja – CSIC, Madrid
  • A. Barona Instituto de Ciencias de la Construcción Eduardo Torroja – CSIC, Madrid
  • D. Navarro Instituto de Ciencias de la Construcción Eduardo Torroja – CSIC, Madrid

DOI:

https://doi.org/10.3989/mc.2009.43907

Keywords:

workability, fresh concrete, superplasticizer, stability, heavyweight, self-compacting concrete

Abstract


Heavyweight concrete is used for shielding in structures requiring protection against radiation. The addition of superplasticizers to mixes yields workable, high density materials with low water/cement ratios. This paper discusses the results of adding a polycarboxylate-based superplasticizer to heavyweight barite concrete to obtain a self-compacting mix. The fresh properties were characterized with trials suitable for self-compacting concrete. Since the large differences in constituent densities make segregation a key issue in this type of concrete, a specific trial was designed to check for homogeneity. The flowability, passing ability and resistance to segregation findings showed that the product obtained was a self-compacting concrete.

Downloads

Download data is not yet available.

References

(1) ACI Committee 304: ACI Technical Document 304.3R-96, Heavyweight Concrete: Measuring, Mixing, Transporting, and Placing, American Concrete Institute, Farmington Hills (MI), USA (1996).

(2) Pihlajavaara, S. E.: ACI Special Publication 34, Preliminary Recommendation for Design, Making and Control of Radiation-Shielding Concrete Structures, American Concrete Institute, Farmington Hills (MI), USA (1972).

(3) Miller, E.: “High-density and radiation-shielding concrete and grout”, en J. Newman, B. S. Choo (eds.): Advanced Concrete Technology-Processes, Elsevier, Oxford, UK (2003), pp. 5/1-5/15.

(4) Kilincarslan, S.; Akkurt, I.; Basyigit, C.: “The effect of barite rate on some physical and mechanical properties of concrete”, Mater. Sci. Eng. A, vol. 424 (2006), pp. 83-86. doi:10.1016/j.msea.2006.02.033 doi:10.1016/j.msea.2006.02.033

(5) Topcu, I. B.: “Properties of heavyweight concrete produced with barite”, Cem. Concrete Res., vol. 33 (2003), pp. 815-822. doi:10.1016/S0008-8846(02)01063-3

(6) Okamura, H.; Ozawa, K.: ACI Special Publication 159, Self-Compactable High-Performance Concrete in Japan, American Concrete Institute, Farmington Hills (MI), USA (1996).

(7) Khayat, K. H.: “Workability, testing and performance of self-consolidating concrete”, ACI Mater. J., vol. 96 (1999), pp. 346-353.

(8) Gallo, E.; Revuelta, D.: “Verificacion de las propiedades reologicas del hormigon autocompactable”, Bol. Soc. Esp. Ceram. V, vol. 43, no 2 (2004), pp. 556-559.

(9) EFNARC: Specification and Guidelines for Self-Compacting Concrete, EFNARC, Farnham, UK (2002).

(10) Domone, P.: “The slump flow test for high-workability concrete”, Cem. Concr. Res., vol. 28, no 2 (1998), pp. 177-182. doi:10.1016/S0008-8846(97)00224-X

(11) Ozawa, K.; Sakata, N.; Okamura, H.: “Evaluation of self compactability of fresh concrete using the funnel test”, Proc. Japan Soc. of Civil Eng., vol. 23, no 490 (1994), pp. 71-80.

(12) Comite Tecnico de Normalizacion AEN/CTN 83, Norma UNE 83361: “Hormigon autocompactante. Caracterizacion de la fluidez. Ensayo de escurrimiento”, AENOR, Madrid, Espana (2007).

(13) Comite Tecnico de Normalizacion AEN/CTN 83, Norma UNE 83363: “Hormigon autocompactante. Caracterizacion de la fluidez en presencia de barras. Metodo de la caja en L”, AENOR, Madrid, Espana (2007).

(14) Comite Tecnico de Normalizacion AEN/CTN 83, Norma UNE 83364: “Hormigon autocompactante. Determinacion del tiempo de flujo. Ensayo del embudo en V”, AENOR, Madrid, Espana (2007).

(15) Valcuende, M. O.; Parra, C.; Jarque, J. C.: “Homogeneidad de los hormigones autocompactables”, Mater. Construcc., vol. 57, no 287 (2007), pp. 37-52. doi:10.3989/mc.2007.v57.i287.55

(16) Otsuki, N.; Hisada, M.; Nagataki, S.; Kamada, T.: “An experimental study on the fluidity of antiwashout underwater concrete”, ACI Mater. J., vol. 93 (1996), pp. 20-25.

(17) Rooney, M. J.; Bartos, P. J. M.:“Development of the settlement column segregation test for fresh self-compacting concrete”, en K. Ozawa; M. Ouchi (eds.): Proc. Second Intnl. Symp. on Self-Compacting Concrete (Tokyo), COMS Engineering Corp., Kochi, Japon (2001), pp. 109-116.

(18) Greenland, A.; Cussigh, F.: Betons auto-placants (recommandations provisoires), Association Francaise de Genie Civil, Paris, Francia (2000).

(19) Gomes, P. C.; Gettu, R.; Agullo, L.; Bernard, C.: “Experimental optimization of high-strength self-compacting concrete”, en K. Ozawa; M. Ouchi (eds.): Proc. Second Intnl. Symp. on Self-Compacting Concrete (Tokyo), COMS Engineering Corp., Kochi, Japon (2001), pp. 377-386.

(20) Technical Committee CEN/TC 104, European Standard EN 934-2:2001: “Admixtures for concrete, mortar and grout-Part 2: Concrete admixtures-Definitions, requirements, conformity, marking and labelling”, European Committee for Standardization (CEN), Bruselas, Belgica (2001).

(21) Technical Committee CEN/TC 104, European Standard EN 12350-2:1999: “Testing fresh concrete-Part 2: Slump test”, European Committee for Standardization (CEN), Bruselas, Belgica (1999).

(22) Technical Committee CEN/TC 104, European Standard EN 12350-6:1999: “Testing fresh concrete-Part 6: Density”, European Committee for Standardization (CEN), Bruselas, Belgica (1999).

(23) Technical Committee CEN/TC 104, European Standard EN 12390-2:2000: “Testing hardened concrete-Part 2: Making and curing specimens for strength tests”, European Committee for Standardization (CEN), Bruselas, Belgica (2000).

(24) Technical Committee CEN/TC 104, European Standard EN 12390-2:2001: “Testing hardened concrete-Part 3: Compressive strength of test specimens”, European Committee for Standardization (CEN), Bruselas, Belgica (2001).

(25) Gettu, R.; Gomes, P. C.; Agullo, L.: “Hormigon autocompactante de alta resistencia: diseno de mezclas y metodos de caracterizacion”, en Proc. del II Congreso de ACHE, Asociacion Cientifico-Tecnica del Hormigon Estructural ACHE, Madrid, Espana (2002), pp. 13-22.

(26) Technical Committee TC14-CPC: “CPC11.2 Absorption of water by concrete by capillarity”, en RILEM Technical Recommendations for the Testing and Use of Construction Materials, E&FN Spon, Londres, UK (1994), pp. 34-35.

(27) Parrott, L. J.: “Moisture conditioning and transport properties of test specimens”, Mater. Struct., 27 (1994), pp. 460-468. doi:10.1007/BF02473450

(28) Technical Committee CEN/TC 104, European Standard EN 12390-8:2000: “Testing hardened concrete-Part 8: Depth of penetration of water under pressure”, European Committee for Standardization (CEN), Bruselas, Belgica (2001).

(29) Comision Permanente del Hormigon: “Anejo 17: Recomendaciones para el uso de hormigon autocompactante”, en Borrador de la Instruccion de Hormigon Estructural EHE, Ministerio de Fomento, Madrid, Espana (2007), pp. A17.1-A17.14.

Downloads

Published

2009-09-30

How to Cite

Revuelta, D., Barona, A., & Navarro, D. (2009). Measurement of properties and of the resistance to segregation in heavyweight, self-compacting barite concrete. Materiales De Construcción, 59(295), 31–44. https://doi.org/10.3989/mc.2009.43907

Issue

Section

Research Articles