Materiales de Construcción, Vol 63, No 312 (2013)

Correction factors to predict the in-place compressive strength of a self-compacting concrete


https://doi.org/10.3989/mc.2013.04512

L. Rojas-Henao
Federación Interamericana del Cemento (FICEM), Colombia

J. Fernández-Gómez
Universidad Politécnica de Madrid, Spain

J. C. López-Agüi
Universidad Politécnica de Madrid, Spain

Abstract


The present study aimed to determine whether certain correction factors used in the in-place prediction of compressive strength with concrete cores are directly applicable to self-consolidating concretes (SCCs). The parameters considered were core diameter, casting direction, core moisture, a number of variables intrinsic to cores, and concrete strength.

Factors were also established for converting SCC 15 3 15-cm cubic specimen strength into 30 315-cm cylindrical specimen strength.

The findings show that the correction factors recommended in EHE-08 and ACI 214.4R-10 overestimate the in-place compressive strength of the SCC analysed. The factors found for converting cubic into cylindrical specimen strength, in turn, were observed to differ from the values set out in the 2010 Model Code, but to be similar to the EHE-08 code proposals.

Keywords


self-consolidating concrete; in-place compressive strength; core samples; cylindrical specimens; cubic specimens

Full Text:


PDF

References


(1) American Concrete Institute. ACI 214.4R. Guide for obtaining cores and interpreting compressive strength results, 2010.

(2) Comisión Permanente Hormigón. EHE-08: Instrucción de hormigón estructural. Ministerio de Fomento. Madrid, 2008.

(3) Pérez, M.: “Relación entre la resistencia a compresión de probetas testigo y probetas normalizadas”, Mater .Construcc., 48 (249), 45-53 (1998). http://dx.doi.org/10.3989/mc.1998.v48.i249.486

(4) Yi, S.T.; Yang, E. I.; Choi, J. C.: “Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete”, Nuclear Engineering and Design, 2006. 236(2), 115-127. http://dx.doi.org/10.1016/j.nucengdes.2005.08.004

(5) Domone, P. L.: “A review of the hardened mechanical properties of self-compacting concrete”. Cement & Concr. Comp. 29, 2007, 1–12. http://dx.doi.org/10.1016/j.cemconcomp.2006.07.010

(6) AENOR. UNE-EN 12390-3: Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas. Madrid, 2009.

(7) Rojas, L.: “Ensayos de información y extracción de probetas testigo en hormigones autocompactantes”. Tesis doctoral. E.T.S.I de Caminos, Canales y Puertos. Universidad Politécnica de Madrid, 2012.

(8) Rojas, L.; Fernández, J.; López, J.C.: “Rebound Hammer, Pulse Velocity, and Core Tests in Self-Consolidating Concrete”, ACI Materials Journal 109 (2) (Mar/Apr 2012), 235-243.

(9) ACHE, Asociación Científico-Técnica del Hormigón Estructural. Grupo de trabajo 2/4. Monografía M-19: Modelos lineales aplicados al hormigón estructural. Madrid, 2012.

(10) Mansur, M. A.; Islam, M. M.: Interpretation of concrete strength for nonstandard specimens. Journal of Materials in Civil Engineering, 2002. 14(151).

(11) CEB-FIP, Model Code: Comite Euro-International du Béton. Bulletin d’Information Nº 213/214. Ed. Thomas Telford, London, 2010.




Copyright (c) 2013 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es