Materiales de Construcción, Vol 64, No 314 (2014)

High belite cement from alternative raw materials


https://doi.org/10.3989/mc.2014.01913

H. Y. Ghorab
Helwan University (Cairo, Egypt), Egypt

M. Rizk
Helwan University (Cairo, Egypt), Egypt

B. Ibrahim
Tourah Cement Company - Suez Cement Group, Cairo, Egypt (Cairo, Egypt), Egypt

M. M. Allam
Tourah Cement Company - Suez Cement Group, Cairo, Egypt (Cairo, Egypt), Egypt

Abstract


Three high belite laboratory clinkers were prepared from traditional and alternative raw materials. Reference clinker was obtained from 77% limestone, 11% sandy clays, 11% fatty clays and 1% iron scales. The fatty clays were replaced by red brick powder in the raw meal of the second clinker and were lowered to 2% with the replacement of 10% of the limestone by egg shells in the third clinker. The SEM examination revealed clear presence of crossed striae and twinning in the rounded belite grains of the reference clinker caused by the transformation of the α´-belite to the β polymorph. Striae were weaker in the second and third clinkers indicating a probable stabilization of the α ‘-belite polymorph.
Compressive strength of the respective cements were attained first after 28 days and the early strength did not improve with increasing fineness. Higher compressive strength values were found for the cement prepared from second clinker.

Keywords


Clinker; α Belite; Stabilization; Alternative raw materials

Full Text:


HTML PDF XML

References


1. Sleight, C. (2013) Global cement demand to see + 4.9% growth. International Construction.

2. Al Roussain, A. (2012) Opening speech. Seventeenth Arab-International Cement Conference and Exhibition Dubai, UAE.

3. Eighth Arab Energy Conference Jordan. (2006) http://www.elaph.com/Web/Economics/2006/5/148399.htm.

4. Intergoverntal Panel on climate change. Special report on Emissions (2001).

5. McCaffrey, R. (2002) Climate change and the cement Industry. Global Cem. Lime Mag. Environ. Spec. Issue, 15–9.

6. European Cement Industry. Cembureau (Organization of the Cement Industry in Europe). http://www.cembureau.be.

7. CEMBUREAU-Environmental benefits of using alternative fuels in cement production a life cycle approach, 1998. Annual report (2001).

8. EN 197-1. Cement – Part 1. (2000) Composition, specifications and uniformity criteria for common cements. European Committee for Standardization.

9. EN 14216. Cement - Composition, specifications and conformity criteria for very low heat special cements.

10. ES 4756. The Egyptian standard for cement "Composition, specifications and uniformity criteria for common cements".

11. Guerrero, A.; Go-i, S.; Campillo, I.; Moragues, A. (2004) Belite cement clinker from coal fly ash of high Ca content. Optimization of synthesis parameters. Envrion. Sci. Tech. 38, 3209–3213. http://dx.doi.org/10.1021/es0351589

12. Guerrero, A.; Go-i, S.; Allegro, V.R. (2009) Durability of class C fly ash belite cement in simulated sodium chloride radioactive liquid waste: Influence of temperature. Journal of Hazardous Materials. 162, 1099–1102. http://dx.doi.org/10.1016/j.jhazmat.2008.05.151

13. Arjunam, P.; Silsbee, M.R.; Roy, D.M. (1999) Sufoaluminate - belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cem. Concr. Res. 29, 1305–1311. http://dx.doi.org/10.1016/S0008-8846(99)00072-1

14. Pimraksa, K.; Hanjitsuwan, P.; Chindaprasit, P. (2009) Synthesis of belite cement from lignite fly ash. Ceramics International 35, 2415–2425. http://dx.doi.org/10.1016/j.ceramint.2009.02.006

15. Rodrigues, F.A. (2003) Low-temperature synthesis of cements from rice hull ash. Cem Concr Res, 33,1525–1529. http://dx.doi.org/10.1016/S0008-8846(03)00104-2

16. Iacobescu, R.I.; Koumpouri, D.; Pontikes, Y,; Saban, R.; Angelopoulos, G. (2011) Utilization of EAF metallurgical slag in green belite cement. U.P.B. Sci. Bull; Series B, 1,73, 187–193.

17. Chaterjee, A.K. (1996) High belite cements-present status and future technological opinions part 1 and 2. Cem. Concr. Res. 26, [8], 1213–1237. http://dx.doi.org/10.1016/0008-8846(96)00099-3

18. Stark, J. (1988) Relationship between phase composition, cooling rate and Na2O content in belite clinkers. ZKG International 41, [4],169–170.

19. Uchikawa, H. (1994) Management strategy in cement technology for the next century: part 3. World cement, 47.

20. Sharp, J.H.; Lawrence, C.D.; Yang, R. (1999) Calcium sulfoaluminate cements-low energy cement special cement or what? Advance Cement Research, 11, 3–13. http://dx.doi.org/10.1680/adcr.1999.11.1.3

21. Forschunginstitut der Zementindustrie (1997) VDZ-Report 96; Verein Deutscher Zementwerke e.V.; Forschungsinstitut der Zementindustrie, Dueseldorf, 42–43.

22. Viswanathan, V.N.; Raina, S. J.; Chaterjee, A.K. (1978) An exploratory investigation on Portland cement. World Cem. Techn. 9, [56],109–118.

23. Kuznetzonova, T.V. (1996) State of the art and prospects of special cements. 8th International Congress on the Chemistry of Cement. Rio de Janeiro 1, 283–291.

24. Roppelt, T.; Dieneman, W.; Klaska, R.; Leth. I.; Sievert, Th. (2006) Use of alternative raw materials for cement clinker production. Cement International 1, 54–63.

25. Baier, H.; Menzel, K. (2011) Utilization of alternative fuels in the cement clinker process. Cement International 1, 52–59.

26. Garcia-Diaz, I.; Puertas, F.; Gazulla, M.F.; Gómez, M.P.; Palacios, M. (2008) Effect of ZnO, ZrO2 and B2O3 on clinkerization process. Part I. Clinkerization reactions and clinker composition. Mater. Construcc. 58, [292], 81–99.

27. Garcia-Diaz, I.; Puertas, F.; Gazulla, M.F.; Gomez, M. P.; Palacios, M. (2009) Effect of ZnO, ZrO2 and B2O3 on clinkerization process. Part II. Phase separation and clinker phase distribution. Mater. Construcc. 59, [294], pp.53–74.

28. Puertas, F.; Garcia-Diaz, I.; Barba, A.; Gazulla M.F.; Palacios, M.; Gómez, M.P.; Martínez-Ramirez, S. (2008) Ceramic wastes as alternative raw materials for Portland cement clinker production. Cem. Concr. Comp., 30, 798–805. http://dx.doi.org/10.1016/j.cemconcomp.2008.06.003

29. Lechtenberg, D. (2009) The use of alternative fuels in the cement industry of developing countries- an opportunity to reduce production costs? Cement International. 2, 66–70.

30. Sui Tongbo.; Guo Suihua.; Liu Kezhong.; Wang Jing.; Liu Yun.; Zhao Ping.; Lu Shan.; Wang Xianbin.; Wu Zhaoqi.; (2009) Research on high belite cement. 17th Ibausil, Weimar Germany, 1–0025.

31. Javellana, M.P.; Jawed, I. (1982) "Extraction of the free lime in Portland Cement and Clinker by Ethylene Glycol", Cem. Concr. Res, 12, 309–403. http://dx.doi.org/10.1016/0008-8846(82)90088-6

32. Gutteridge, W.A. (1979) On the dissolution of the interstitial phases in Portland cement. Cem. Concr. Res. 9, 319–324. http://dx.doi.org/10.1016/0008-8846(79)90124-8

33. Holderbank, Cement Handbook, Materials technology, Volume II, (1979), pp. 16–28.

34. Gygi, H. (1952) Thermodynamics of cement kiln. Proceeding of the 3rd International Symposium on the Chemistry of Cement, London, 750–79.

35. Stark, J.; Mueller, A.; Schraeder, R.; Ruemmpler, K. (1981) Existence conditions of hydraulically active belite cement. Zement-Kalk-Gips, 34, 476–81.

36. De la Torre, A.G.; Aranda, M.A.G.; Morsli, K.; Cuberos, A.J.M.; Zahir, M. (2007) Quantitative phase analysis of belite Portland cements from synchrotron X-ray powder diffraction. Procc. 12th International Congress on the Chemistry of Cement, Montreal, Canada. W2-06.5.

37. Morsli, K.; De La Torre, A.G.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. (2007) Quantitative Phase Analysis of Laboratory-Active Belite Clinkers by Synchrotron Powder Diffraction. J. Am. Ceram. Soc.; 90, [10], 3205–3212. http://dx.doi.org/10.1111/j.1551-2916.2007.01870.x

38. Cuesta, A.; Losilla, E.R.; Aranda, M.A.G.; Sanz, J.; De la Torre, A.G. (2012) Reactive belite tabilization mechanisms by boron – bearing dopants. Cem Concr Res 42, 598–606. http://dx.doi.org/10.1016/j.cemconres.2012.01.006

39. Noirfontaine, M.N.; Tusseau-Nenez, S.; Signes-Frehel, M.; Gasecki, G.; Girod-Labianca, C. (2009) Effect of phosphorous on tricalcium silicate T1: from synthesis to structural characterization. J. Am. Cer. Soc. 92, [10], 233–2344. http://dx.doi.org/10.1111/j.1551-2916.2009.03092.x

40. Punkte, S.; Schneider, M. (2008) Effect of phosphate on clinker mineralogy and cement properties. Cement International 6, [5], 80–93.

41. Kolovos, K.; Tsivilis, S.; Kakali, G. (2005) SEM examination of clinkers containing foreign elements. Cem. Concr. Com. 27, 163–17. http://dx.doi.org/10.1016/j.cemconcomp.2004.02.003

42. Fukuda, K.; Maki, K.; Suketoshi, I. (1996) Thermal hysteresis for the α´L—β transformations in strontium oxide-doped dicalcium silicates. J. Am. Cer. Soc. 79, [11], 2969–2970. http://dx.doi.org/10.1111/j.1151-2916.1996.tb08735.x

43. Catti, M.; Gazzoni, G.; Ivaldi, G. (1984) Order-disorder in the α'-(Ca,Sr)₂SiO₄ solid solution: a structural and statistical-thermodynamic analysis, Acta Crystallographica B, 40, 537. http://dx.doi.org/10.1107/S0108768184002652

44. Kakali, G.; Kasselouri, V.; Parissakis, G. (1990) Investigation of the effect of Mo, Nb, Wand Zr oxides on the formation of Portland cement clinker, Cem. Concr. Res. 20, 131–138. http://dx.doi.org/10.1016/0008-8846(90)90123-F




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es