Self-heating function of carbon nanofiber cement pastes

Authors

  • O. Galao Universidad de Alicante
  • F. J. Baeza Universidad de Alicante
  • E. Zornoza Universidad de Alicante
  • P. Garcés Universidad de Alicante

DOI:

https://doi.org/10.3989/mc.2014.01713

Keywords:

Cement, Carbon nanofibers, Self-heating

Abstract


The viability of carbon nanofiber (CNF) composites incement matrices as a self-heating material is reported in this paper. This functional application would allow the use of CNF cement composites as a heating element in buildings, or for deicing pavements of civil engineering transport infrastructures, such as highways or airport runways. Cement pastes with the addition of different CNF dosages (from 0 to 5% by cement mass) have been prepared. Afterwards, tests were run at different fixed voltages (50, 100 and 150V), and the temperature of the specimens was registered. Also the possibility of using a casting method like shotcrete, instead of just pouring the fresh mix into the mild (with no system’s efficiency loss expected) was studied. Temperatures up to 138 °C were registered during shotcrete-5% CNF cement paste tests (showing initial 10 °C/min heating rates). However a minimum voltage was required in order to achieve a proper system functioning.

Downloads

Download data is not yet available.

References

Baeza, F.J.; Chung, D.D.L.; Zornoza, E.; Andión, L.G.; Garcés, P. (2010) Triple percolation in concrete reinforced with carbon fiber. ACI Mater. J., 107 [4], 396–402.

Chung, D.D.L. (2002) Electrical Conduction Behavior of Cement-Matrix. Composites. J. Mater. Eng. Perform., 11 [2], 194–204. http://dx.doi.org/10.1361/105994902770344268

Galao, O. (2012) Matrices cementicias multifuncionales mediante adición de nanofibras de carbono. Ph.D. Thesis, University of Alicante, Spain.

Chung, D.D.L. (2001) Functional Properties of Cement-Matrix Composites. J. Mater. Sci., 36, 1315–1324. http://dx.doi.org/10.1023/A:1017522616006

Yehia, S.; Tuan, C. (1999) Conductive concrete overlay for bridge deck deicing. ACI Mater. J., 96 [3], 382–390.

Yehia, S.; Tuan, C.; Ferdon, D.; Chen, B. (2000) Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. ACI Mater. J., 97 [2], 172–181.

Chung, D.D.L. (2001) Cement-Matrix Composites for Thermal Engineering. Appl. Therm. Eng., 21, 1607–1619. http://dx.doi.org/10.1016/S1359-4311(01)00043-6

Chung, D.D.L. (2001) Materials for thermal conduction. Appl. Therm. Eng., 21, 1593–1605. http://dx.doi.org/10.1016/S1359-4311(01)00042-4

Wang, S.; Wen, S.; Chung, D.D.L. (2004) Resistance heating using electrically conductive cements. Adv. Cem. Res., 16, 161–166. http://dx.doi.org/10.1680/adcr.2004.16.4.161

Tuan, C. (2004) Electrical resistance heating of conductive concrete containing steel fibers and shavings. ACI Mater. J., 101 [1], 65–70.

Chung, D.D.L. (2004) Self-heating structural materials. Smart Mater. Struct., 13 [3], 562–565. . http://dx.doi.org/10.1088/0964-1726/13/3/015

Tuan, C.; Yehia, S. (2004) Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing. ACI Mater. J., 101 [4], 287–293.

Chang, C.; Ho, M.; Song, G.; Mo, Y.L.; Li, H. (2009) A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements. Smart Mater. Struct., 18 [12], 1–5. http://dx.doi.org/10.1088/0964-1726/18/12/127001

Zhao, H.M.; Wu, Z.M.; Wang, S.G.; Zheng, J.J.; Che, G.J. (2011) Concrete pavement deicing with carbon fiber heating wires. Cold Reg. Sci. Technol., 65 [3], 413–420. http://dx.doi.org/10.1016/j.coldregions.2010.10.010

Li, H.; Zhang, Q.; Xiao, H. (2013) Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Reg. Sci. Technol., 86, 22–35. http://dx.doi.org/10.1016/j.coldregions.2012.10.007

Baeza, F.J.; Zornoza, E.; Andión, L.G.; Ivorra, S.; Garcés, P. (2011) Variables affecting strain sensing function in cementitious composites with carbon fibers, Comput. Concrete, 8 [2], 229–241. http://dx.doi.org/10.12989/cac.2011.8.2.229

Chen, P.W.; Chung, D.D.L. (1996) Concrete as a new strain/stress sensor. Compos. Part B-Eng., 27B [1], 11–23. http://dx.doi.org/10.1016/1359-8368(95)00002-X

Zornoza, E.; Catalá, G.; Jiménez, F.; Andión, L.G.; Garcés, P. (2010) Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash. Mater. Construcc., 60 [300], 21–32.

Zornoza, E.; Galao, O.; Baeza, F.J.; Garcés, P. (2012) Electromagnetic interference shielding of cement pastes with carbon nanofibers. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Yang, Y.; Gupta.; M.C.; Dudley, K.L. (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18 [345701], 4.

Pérez, A.; Climent, M.A.; Garcés, P. (2010) Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as an anode, Corros. Sci., 52 [5], 1576–1581. http://dx.doi.org/10.1016/j.corsci.2010.01.016

del Moral, B.; Galao, O.; Antón, C.; Climent, M.A.; Garcés, P. (2013) Usability of cement paste containing carbon nanofibers as an anode in electrochemical chloride extraction from concrete. Mater. Construcc., 63 [309], 39–48. http://dx.doi.org/10.3989/mc.2012.03111

Garcés, P.; Carmona, J.; Galao, O.; Zornoza, E.; Climent, M.A. (2012) Carbon nanofibre cement paste as anode for electrochemical chloride removal. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Bertolini L.; Bolzoni F.; Pastore T.; Pedeferri P. (2004) Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete. Cement Concrete Res., 34 [4], 681–694. http://dx.doi.org/10.1016/j.cemconres.2003.10.018

Xu, J.; Yao, W. (2009) Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode. Constr. Build. Mater., 23 [6], 2220–2226. http://dx.doi.org/10.1016/j.conbuildmat.2008.12.002

Alcaide, J.S.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Construcc., 57 [288], 33–48.

Garcés, P.; Zornoza, E.; Alcocel, E.G.; Galao, O.; Andión, L.G. (2012) Mechanical properties and corrosion of CAC mortars with carbon fibers. Constr. Build. Mater., 34, 91–96. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.020

Chung, D.D.L. (2004) Cement-Matrix Structural Nanocomposites. Met. Mater. Int., 10 [1], 55–67. http://dx.doi.org/10.1007/BF03027364. http://dx.doi.org/10.1007/BF03027364

Coleman, J.N.; Khan, U.; Blau, W.J.; Gun'ko, Y.K. (2006) Small but strong: A review of the mechanical properties of carbon nanotube polymer composites. Carbon, 44 [9], 1624–1652. http://dx.doi.org/10.1016/j.carbon.2006.02.038

Wang, J.G.; Fang, Z.P.; Gu, A.J.; Xu, L.H.; Liu, F. (2006) Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J. Appl. Polym. Sci., 100 [1], 97–104. http://dx.doi.org/10.1002/app.22647

Tibbetts, G.G.; Lake, M.L.; Strong, K.L.; Rice, B.P. (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol., 67 [7–8], 1709–1718. http://dx.doi.org/10.1016/j.compscitech.2006.06.015

Marrs, B.; Andrews, R.; Pienkowski, D. (2007) Multiwall carbon nanotubes enhance the fatigue performance of physiologically maintained methyl methacrylate-styrene copolymer. Carbon, 45 [10], 2098–2104. http://dx.doi.org/10.1016/j.carbon.2007.05.013

Abu Al-Rub, R.K.; Tyson, B.M. (2010) Assessment the Potential of Using Carbon Nanotubes Reinforcements for Improving the Tensile/Flexural Strength and Fracture Toughness of Portland Cement Paste for Damage Resistant Concrete Transportation Infrastructures. Technical Report No. SWUTC/10/476660-00011-1, http://ntl.bts.gov/lib/38000/38500/38505/476660-00011-1.pdf

Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. (2013) Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials, 6, 841–855. http://dx.doi.org/10.3390/ma6030841

Galao, O.; Zornoza, E.; Baeza, F.J.; Bernabeu, A.; Garcés, P. (2012) Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Mater. Construcc., 62 [307], 343–357. http://dx.doi.org/10.3989/mc.2012.01211

Zhang, K.; Han, B.; Yu, X. (2011) Nickel particle based electrical resistance heating cementitious composites. Cold Reg. Sci. Technol., 69, 64–69. http://dx.doi.org/10.1016/j.coldregions.2011.07.002

Published

2014-03-30

How to Cite

Galao, O., Baeza, F. J., Zornoza, E., & Garcés, P. (2014). Self-heating function of carbon nanofiber cement pastes. Materiales De Construcción, 64(314), e015. https://doi.org/10.3989/mc.2014.01713

Issue

Section

Research Articles

Most read articles by the same author(s)