Materiales de Construcción, Vol 64, No 314 (2014)

Self-heating function of carbon nanofiber cement pastes

O. Galao
Universidad de Alicante, Spain

F. J. Baeza
Universidad de Alicante, Spain

E. Zornoza
Universidad de Alicante, Spain

P. Garcés
Universidad de Alicante, Spain


The viability of carbon nanofiber (CNF) composites incement matrices as a self-heating material is reported in this paper. This functional application would allow the use of CNF cement composites as a heating element in buildings, or for deicing pavements of civil engineering transport infrastructures, such as highways or airport runways.
Cement pastes with the addition of different CNF dosages (from 0 to 5% by cement mass) have been prepared. Afterwards, tests were run at different fixed voltages (50, 100 and 150V), and the temperature of the specimens was registered. Also the possibility of using a casting method like shotcrete, instead of just pouring the fresh mix into the mild (with no system’s efficiency loss expected) was studied.
Temperatures up to 138 °C were registered during shotcrete-5% CNF cement paste tests (showing initial 10 °C/min heating rates). However a minimum voltage was required in order to achieve a proper system functioning.


Cement; Carbon nanofibers; Self-heating

Full Text:



Baeza, F.J.; Chung, D.D.L.; Zornoza, E.; Andión, L.G.; Garcés, P. (2010) Triple percolation in concrete reinforced with carbon fiber. ACI Mater. J., 107 [4], 396–402.

Chung, D.D.L. (2002) Electrical Conduction Behavior of Cement-Matrix. Composites. J. Mater. Eng. Perform., 11 [2], 194–204.

Galao, O. (2012) Matrices cementicias multifuncionales mediante adición de nanofibras de carbono. Ph.D. Thesis, University of Alicante, Spain.

Chung, D.D.L. (2001) Functional Properties of Cement-Matrix Composites. J. Mater. Sci., 36, 1315–1324.

Yehia, S.; Tuan, C. (1999) Conductive concrete overlay for bridge deck deicing. ACI Mater. J., 96 [3], 382–390.

Yehia, S.; Tuan, C.; Ferdon, D.; Chen, B. (2000) Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. ACI Mater. J., 97 [2], 172–181.

Chung, D.D.L. (2001) Cement-Matrix Composites for Thermal Engineering. Appl. Therm. Eng., 21, 1607–1619.

Chung, D.D.L. (2001) Materials for thermal conduction. Appl. Therm. Eng., 21, 1593–1605.

Wang, S.; Wen, S.; Chung, D.D.L. (2004) Resistance heating using electrically conductive cements. Adv. Cem. Res., 16, 161–166.

Tuan, C. (2004) Electrical resistance heating of conductive concrete containing steel fibers and shavings. ACI Mater. J., 101 [1], 65–70.

Chung, D.D.L. (2004) Self-heating structural materials. Smart Mater. Struct., 13 [3], 562–565. .

Tuan, C.; Yehia, S. (2004) Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing. ACI Mater. J., 101 [4], 287–293.

Chang, C.; Ho, M.; Song, G.; Mo, Y.L.; Li, H. (2009) A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements. Smart Mater. Struct., 18 [12], 1–5.

Zhao, H.M.; Wu, Z.M.; Wang, S.G.; Zheng, J.J.; Che, G.J. (2011) Concrete pavement deicing with carbon fiber heating wires. Cold Reg. Sci. Technol., 65 [3], 413–420.

Li, H.; Zhang, Q.; Xiao, H. (2013) Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Reg. Sci. Technol., 86, 22–35.

Baeza, F.J.; Zornoza, E.; Andión, L.G.; Ivorra, S.; Garcés, P. (2011) Variables affecting strain sensing function in cementitious composites with carbon fibers, Comput. Concrete, 8 [2], 229–241.

Chen, P.W.; Chung, D.D.L. (1996) Concrete as a new strain/stress sensor. Compos. Part B-Eng., 27B [1], 11–23.

Zornoza, E.; Catalá, G.; Jiménez, F.; Andión, L.G.; Garcés, P. (2010) Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash. Mater. Construcc., 60 [300], 21–32.

Zornoza, E.; Galao, O.; Baeza, F.J.; Garcés, P. (2012) Electromagnetic interference shielding of cement pastes with carbon nanofibers. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Yang, Y.; Gupta.; M.C.; Dudley, K.L. (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18 [345701], 4.

Pérez, A.; Climent, M.A.; Garcés, P. (2010) Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as an anode, Corros. Sci., 52 [5], 1576–1581.

del Moral, B.; Galao, O.; Antón, C.; Climent, M.A.; Garcés, P. (2013) Usability of cement paste containing carbon nanofibers as an anode in electrochemical chloride extraction from concrete. Mater. Construcc., 63 [309], 39–48.

Garcés, P.; Carmona, J.; Galao, O.; Zornoza, E.; Climent, M.A. (2012) Carbon nanofibre cement paste as anode for electrochemical chloride removal. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Bertolini L.; Bolzoni F.; Pastore T.; Pedeferri P. (2004) Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete. Cement Concrete Res., 34 [4], 681–694.

Xu, J.; Yao, W. (2009) Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode. Constr. Build. Mater., 23 [6], 2220–2226.

Alcaide, J.S.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Construcc., 57 [288], 33–48.

Garcés, P.; Zornoza, E.; Alcocel, E.G.; Galao, O.; Andión, L.G. (2012) Mechanical properties and corrosion of CAC mortars with carbon fibers. Constr. Build. Mater., 34, 91–96.

Chung, D.D.L. (2004) Cement-Matrix Structural Nanocomposites. Met. Mater. Int., 10 [1], 55–67.

Coleman, J.N.; Khan, U.; Blau, W.J.; Gun'ko, Y.K. (2006) Small but strong: A review of the mechanical properties of carbon nanotube polymer composites. Carbon, 44 [9], 1624–1652.

Wang, J.G.; Fang, Z.P.; Gu, A.J.; Xu, L.H.; Liu, F. (2006) Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J. Appl. Polym. Sci., 100 [1], 97–104.

Tibbetts, G.G.; Lake, M.L.; Strong, K.L.; Rice, B.P. (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol., 67 [7–8], 1709–1718.

Marrs, B.; Andrews, R.; Pienkowski, D. (2007) Multiwall carbon nanotubes enhance the fatigue performance of physiologically maintained methyl methacrylate-styrene copolymer. Carbon, 45 [10], 2098–2104.

Abu Al-Rub, R.K.; Tyson, B.M. (2010) Assessment the Potential of Using Carbon Nanotubes Reinforcements for Improving the Tensile/Flexural Strength and Fracture Toughness of Portland Cement Paste for Damage Resistant Concrete Transportation Infrastructures. Technical Report No. SWUTC/10/476660-00011-1,

Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. (2013) Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials, 6, 841–855.

Galao, O.; Zornoza, E.; Baeza, F.J.; Bernabeu, A.; Garcés, P. (2012) Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Mater. Construcc., 62 [307], 343–357.

Zhang, K.; Han, B.; Yu, X. (2011) Nickel particle based electrical resistance heating cementitious composites. Cold Reg. Sci. Technol., 69, 64–69.

Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support