Materiales de Construcción, Vol 64, No 314 (2014)

Self-heating function of carbon nanofiber cement pastes


https://doi.org/10.3989/mc.2014.01713

O. Galao
Universidad de Alicante, Spain

F. J. Baeza
Universidad de Alicante, Spain

E. Zornoza
Universidad de Alicante, Spain

P. Garcés
Universidad de Alicante, Spain

Abstract


The viability of carbon nanofiber (CNF) composites incement matrices as a self-heating material is reported in this paper. This functional application would allow the use of CNF cement composites as a heating element in buildings, or for deicing pavements of civil engineering transport infrastructures, such as highways or airport runways.
Cement pastes with the addition of different CNF dosages (from 0 to 5% by cement mass) have been prepared. Afterwards, tests were run at different fixed voltages (50, 100 and 150V), and the temperature of the specimens was registered. Also the possibility of using a casting method like shotcrete, instead of just pouring the fresh mix into the mild (with no system’s efficiency loss expected) was studied.
Temperatures up to 138 °C were registered during shotcrete-5% CNF cement paste tests (showing initial 10 °C/min heating rates). However a minimum voltage was required in order to achieve a proper system functioning.

Keywords


Cement; Carbon nanofibers; Self-heating

Full Text:


HTML PDF XML

References


Baeza, F.J.; Chung, D.D.L.; Zornoza, E.; Andión, L.G.; Garcés, P. (2010) Triple percolation in concrete reinforced with carbon fiber. ACI Mater. J., 107 [4], 396–402.

Chung, D.D.L. (2002) Electrical Conduction Behavior of Cement-Matrix. Composites. J. Mater. Eng. Perform., 11 [2], 194–204. http://dx.doi.org/10.1361/105994902770344268

Galao, O. (2012) Matrices cementicias multifuncionales mediante adición de nanofibras de carbono. Ph.D. Thesis, University of Alicante, Spain.

Chung, D.D.L. (2001) Functional Properties of Cement-Matrix Composites. J. Mater. Sci., 36, 1315–1324. http://dx.doi.org/10.1023/A:1017522616006

Yehia, S.; Tuan, C. (1999) Conductive concrete overlay for bridge deck deicing. ACI Mater. J., 96 [3], 382–390.

Yehia, S.; Tuan, C.; Ferdon, D.; Chen, B. (2000) Conductive concrete overlay for bridge deck deicing: mixture proportioning, optimization, and properties. ACI Mater. J., 97 [2], 172–181.

Chung, D.D.L. (2001) Cement-Matrix Composites for Thermal Engineering. Appl. Therm. Eng., 21, 1607–1619. http://dx.doi.org/10.1016/S1359-4311(01)00043-6

Chung, D.D.L. (2001) Materials for thermal conduction. Appl. Therm. Eng., 21, 1593–1605. http://dx.doi.org/10.1016/S1359-4311(01)00042-4

Wang, S.; Wen, S.; Chung, D.D.L. (2004) Resistance heating using electrically conductive cements. Adv. Cem. Res., 16, 161–166. http://dx.doi.org/10.1680/adcr.2004.16.4.161

Tuan, C. (2004) Electrical resistance heating of conductive concrete containing steel fibers and shavings. ACI Mater. J., 101 [1], 65–70.

Chung, D.D.L. (2004) Self-heating structural materials. Smart Mater. Struct., 13 [3], 562–565. . http://dx.doi.org/10.1088/0964-1726/13/3/015

Tuan, C.; Yehia, S. (2004) Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing. ACI Mater. J., 101 [4], 287–293.

Chang, C.; Ho, M.; Song, G.; Mo, Y.L.; Li, H. (2009) A feasibility study of self-heating concrete utilizing carbon nanofiber heating elements. Smart Mater. Struct., 18 [12], 1–5. http://dx.doi.org/10.1088/0964-1726/18/12/127001

Zhao, H.M.; Wu, Z.M.; Wang, S.G.; Zheng, J.J.; Che, G.J. (2011) Concrete pavement deicing with carbon fiber heating wires. Cold Reg. Sci. Technol., 65 [3], 413–420. http://dx.doi.org/10.1016/j.coldregions.2010.10.010

Li, H.; Zhang, Q.; Xiao, H. (2013) Self-deicing road system with a CNFP high-efficiency thermal source and MWCNT/cement-based high-thermal conductive composites. Cold Reg. Sci. Technol., 86, 22–35. http://dx.doi.org/10.1016/j.coldregions.2012.10.007

Baeza, F.J.; Zornoza, E.; Andión, L.G.; Ivorra, S.; Garcés, P. (2011) Variables affecting strain sensing function in cementitious composites with carbon fibers, Comput. Concrete, 8 [2], 229–241. http://dx.doi.org/10.12989/cac.2011.8.2.229

Chen, P.W.; Chung, D.D.L. (1996) Concrete as a new strain/stress sensor. Compos. Part B-Eng., 27B [1], 11–23. http://dx.doi.org/10.1016/1359-8368(95)00002-X

Zornoza, E.; Catalá, G.; Jiménez, F.; Andión, L.G.; Garcés, P. (2010) Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash. Mater. Construcc., 60 [300], 21–32.

Zornoza, E.; Galao, O.; Baeza, F.J.; Garcés, P. (2012) Electromagnetic interference shielding of cement pastes with carbon nanofibers. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Yang, Y.; Gupta.; M.C.; Dudley, K.L. (2007) Towards cost-efficient EMI shielding materials using carbon nanostructure-based nanocomposites. Nanotechnology, 18 [345701], 4.

Pérez, A.; Climent, M.A.; Garcés, P. (2010) Electrochemical extraction of chlorides from reinforced concrete using a conductive cement paste as an anode, Corros. Sci., 52 [5], 1576–1581. http://dx.doi.org/10.1016/j.corsci.2010.01.016

del Moral, B.; Galao, O.; Antón, C.; Climent, M.A.; Garcés, P. (2013) Usability of cement paste containing carbon nanofibers as an anode in electrochemical chloride extraction from concrete. Mater. Construcc., 63 [309], 39–48. http://dx.doi.org/10.3989/mc.2012.03111

Garcés, P.; Carmona, J.; Galao, O.; Zornoza, E.; Climent, M.A. (2012) Carbon nanofibre cement paste as anode for electrochemical chloride removal. In NICOM4 Nanotechnology in Construction, Proceedings of the 4th International Symposium on Nanotechnology in Construction, Agios Nikolaos, Creta.

Bertolini L.; Bolzoni F.; Pastore T.; Pedeferri P. (2004) Effectiveness of a conductive cementitious mortar anode for cathodic protection of steel in concrete. Cement Concrete Res., 34 [4], 681–694. http://dx.doi.org/10.1016/j.cemconres.2003.10.018

Xu, J.; Yao, W. (2009) Current distribution in reinforced concrete cathodic protection system with conductive mortar overlay anode. Constr. Build. Mater., 23 [6], 2220–2226. http://dx.doi.org/10.1016/j.conbuildmat.2008.12.002

Alcaide, J.S.; Alcocel, E.G.; Puertas, F.; Lapuente, R.; Garcés, P. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Construcc., 57 [288], 33–48.

Garcés, P.; Zornoza, E.; Alcocel, E.G.; Galao, O.; Andión, L.G. (2012) Mechanical properties and corrosion of CAC mortars with carbon fibers. Constr. Build. Mater., 34, 91–96. http://dx.doi.org/10.1016/j.conbuildmat.2012.02.020

Chung, D.D.L. (2004) Cement-Matrix Structural Nanocomposites. Met. Mater. Int., 10 [1], 55–67. http://dx.doi.org/10.1007/BF03027364. http://dx.doi.org/10.1007/BF03027364

Coleman, J.N.; Khan, U.; Blau, W.J.; Gun'ko, Y.K. (2006) Small but strong: A review of the mechanical properties of carbon nanotube polymer composites. Carbon, 44 [9], 1624–1652. http://dx.doi.org/10.1016/j.carbon.2006.02.038

Wang, J.G.; Fang, Z.P.; Gu, A.J.; Xu, L.H.; Liu, F. (2006) Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix. J. Appl. Polym. Sci., 100 [1], 97–104. http://dx.doi.org/10.1002/app.22647

Tibbetts, G.G.; Lake, M.L.; Strong, K.L.; Rice, B.P. (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos. Sci. Technol., 67 [7–8], 1709–1718. http://dx.doi.org/10.1016/j.compscitech.2006.06.015

Marrs, B.; Andrews, R.; Pienkowski, D. (2007) Multiwall carbon nanotubes enhance the fatigue performance of physiologically maintained methyl methacrylate-styrene copolymer. Carbon, 45 [10], 2098–2104. http://dx.doi.org/10.1016/j.carbon.2007.05.013

Abu Al-Rub, R.K.; Tyson, B.M. (2010) Assessment the Potential of Using Carbon Nanotubes Reinforcements for Improving the Tensile/Flexural Strength and Fracture Toughness of Portland Cement Paste for Damage Resistant Concrete Transportation Infrastructures. Technical Report No. SWUTC/10/476660-00011-1, http://ntl.bts.gov/lib/38000/38500/38505/476660-00011-1.pdf

Baeza, F.J.; Galao, O.; Zornoza, E.; Garcés, P. (2013) Multifunctional cement composites strain and damage sensors applied on reinforced concrete (RC) structural elements. Materials, 6, 841–855. http://dx.doi.org/10.3390/ma6030841

Galao, O.; Zornoza, E.; Baeza, F.J.; Bernabeu, A.; Garcés, P. (2012) Effect of carbon nanofiber addition in the mechanical properties and durability of cementitious materials. Mater. Construcc., 62 [307], 343–357. http://dx.doi.org/10.3989/mc.2012.01211

Zhang, K.; Han, B.; Yu, X. (2011) Nickel particle based electrical resistance heating cementitious composites. Cold Reg. Sci. Technol., 69, 64–69. http://dx.doi.org/10.1016/j.coldregions.2011.07.002




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es