Materiales de Construcción, Vol 64, No 315 (2014)

A comparison of experimental methods for measuring water permeability of porous building rocks


https://doi.org/10.3989/mc.2014.06213

S. Galvan
LPA, Unidad Asociada UA-CSIC (Alicante), Spain

C. Pla
LPA, Unidad Asociada UA-CSIC (Alicante); Universidad de Alicante, Spain

N. Cueto
LPA, Unidad Asociada UA-CSIC (Alicante); Universidad de Alicante, Spain

J. Martínez-Martínez
LPA, Unidad Asociada UA-CSIC (Alicante); Universidad de Alicante, Spain

M. A. García-del-Cura
LPA, Unidad Asociada UA-CSIC (Alicante); Instituto de Geociencias IGEO, CSIC, UCM (Madrid), Spain

D. Benavente
LPA, Unidad Asociada UA-CSIC (Alicante); Universidad de Alicante, Spain

Abstract


This paper compares different experimental methods for measuring water permeability in 17 different porous building rocks. Both commercial apparatus and specially made designed permeameters are used for characterising intrinsic permeability and hydraulic conductivity, k, of rocks in the range of 10−12 to 10−4 m/s (~ 10−19−10−11 m2 or ~ 10−4−104 mD). We use both falling head and constant head permeameter methods including the triaxial and modified triaxial tests and a classical constant head permeameter.
Results showed that for very low and low permeability samples (k< 10−6 m/s), triaxial conditions were found the most accurate procedures and they provided similar or slightly lower permeability values than constant and falling head methods. The latter techniques were highly recommended for permeable and high permeable porous building materials. Water permeability values were also linked to effective porosity and interpreted in terms of interparticle and vugs porosity. Finally, some modifications in the apparatus and procedures were carried out in order to assess water permeability in soft materials, which involve the use of non-saturated samples.

Keywords


Permeability; Water transport properties; Ornamental stone; Sedimentary rocks

Full Text:


HTML PDF XML

References


Hall, C.; Hoff, W.D. (2002) Water transport in brick, stone and concrete., p. 336, Spon Press. London. http://dx.doi.org/10.4324/9780203301708

Winkler, E.M. (1997) Stone in architecture: properties, durability, p. 327 Springer-Berlin-Heidelberg. New York. http://dx.doi.org/10.1007/978-3-662-10070-7

Fornaro, M.; Lovera, E. (2004) Engineering geology for infrastructure planning in Europe. In: Lecture Notes in Earth Sciencies. Springer-Berlin-Heidelberg. 104, 574–584.

Valcuende, M.O.; Parra, C.; Benlloch, J. (2005) Permeability, porosity and compressive strength of self-compacting concrete. Mater. Construcc., 55, [280], 17–26. http://dx.doi.org/10.3989/mc.2005.v55.i280.203

Bermejo, E.B.; Moragues, A.; Gálvez, J.C.; Fernández, M. (2010) Permeability and pore size distribution in medium strength self-compacting concrete. Mater. Construcc., 60, [299], 37–51.

Fitzner, B.; Heinrichs, K.; La Bouchardiere, D. (2004) The Bangudae Petroglyph in Ulsan, Korea: studies on weathering damage and risk prognosis. Environ. Geol., 46, 504–526. http://dx.doi.org/10.1007/s00254-004-1052-x

Siegesmund, S.; Snethlage, R. (Eds) (2011) Stone in Architecture: Properties, Durability, p. 552, Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-14475-2

Benavente, D.; Cueto, N.; Martínez-Martínez, J.; García-del-Cura, M.A.; Ca-averas, J.C. (2007) Influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol., 52, 197–206. http://dx.doi.org/10.1007/s00254-006-0475-y

Benavente, D. (2011) Why Pore Size Is Important in the Deterioration of Porous Stones Used in the Built Heritage. Macla, 15, 41–42.

McCabe, S.; McKinley, J. M.; Gómez-Heras, M. (2011) Dynamical instability in surface permeability characteristics of building sandstones in response to salt accumulation over time. Geomorphology., 130, 65–75. http://dx.doi.org/10.1016/j.geomorph.2010.10.006

McKinley, J. M.; McCabe, S. (2010) A Geostatistical Investigation into Changing Permeability of Sandstones During Weathering Simulations. Geographical Analysis., 42, 180–203. http://dx.doi.org/10.1111/j.1538-4632.2010.00789.x

ASTM D4525-90 (1990) Standard: Standard Test Method for Permeability of Rocks by Flowing Air. Anual Book of ASTM standards, vol. 04.08 (Soil and Rocks).

ASTM D6035-02 (2002) Standard: Standard Test Method for Determining the Effect of Freeze-Thaw on Hydraulic Conductivity of Compacted or Undisturbed Soil Specimens Using a Flexible Wall Permeameter. ANNUAL BOOK OF ASTM STANDARS, vol. 04.09 (Soil and Rock).

ASTM D6527-00 (2000) Standard: Standard Test Method for Determining Unsaturated and Saturated Hydraulic Conductivity in Porous Media by Steady- State Centrifugation. ANNUAL BOOK OF ASTM STANDARS, vol. 04.09 (Soil and Rock).

UNE 103403 (1999) Determinación de la permeabilidad de una muestra de suelo. Método de carga constante.

UNE 83310 (1990) Ensayos de hormigón. Determinación de la permeabilidad. RILEM (1980) Tentative recomendations issued by 13-mr committee of mortars and rederinf. Vol 13 (1980), no 73–78. ASTM 5856-95 (1995) Standard: Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter. ANNUAL BOOK OF ASTM STANDARS, vol. 04.09 (Soil and Rock). Campos, M.J. (2003) La piedra Dorada en Úbeda y Baeza. Caracterización y procesos de alteración". PhD Thesis. Universidad de Jaén, Departamento de Geología.

Benavente, D. (2003) Modelización y estimación de la durabilidad de materiales pétreos porosos frente a la cristalización de sales. PhD Thesis, Universidad de Alicante. Biblioteca Virtual Miguel de Cervantes: http://www.cervantesvirtual.com/FichaObra.html?Ref=12011 (Accessed:10/07/2013).

Benavente, D.; García-del-Cura, M.A.; Fort, R.; Ordó-ez, S. (2004) Durability estimation of porous building stones from pore structure and strength. Eng. Geol., 74, 113–127. http://dx.doi.org/10.1016/j.enggeo.2004.03.005

Benavente, D.; Cultrone, G.; Gómez-Heras, M. (2008) The combined influence of mineralogy, hydric and thermal properties in the durability of porous building stones. Eur. J. Min., 20, 673–685. http://dx.doi.org/10.1127/0935-1221/2008/0020-1850

García-del-Cura, M.A.; Benavente, D.; Martinez- Martinez, J.; Cueto, N. (2012) Sedimentary structures and physical properties in travertine and carbonate tufa building Stone. Const. Build. Mat., 28, 456–467. http://dx.doi.org/10.1016/j.conbuildmat.2011.08.042

Martínez-Martínez, J.; Benavente, D.; Gómez-Heras, M.; Marco-Casta-o, L.; García-del-Cura, M. (2013) Non-linear decay of building stones during freeze–thaw weathering processes. Const. Build. Mat., 38, 443-454. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.059

Cueto, N.; Benavente, D.; Martínez-Martínez, J.; García-del-Cura MA. (2009) Influence of mesofabric on water transport properties of continental limestones. In proceeding of: IX ASMOSIA (Association for the Study of Marbles and other Stones in Antiquity) International Conference, 181, Tarragona (Spain). PMCid:PMC2739526

Hölting, B. (1989) Hydrogeology. An introduction to general and applied hydrogeology., p. 226, F. Enke Publ., Stuttgart

Lucia, FJ. (2007) Carbonate reservoir characterization: an integrated approach., Springer, USA.

Arizzi, A.; Cultrone, G. (2013) The water transfer properties and drying shrinkage of aerial lime-based mortars: an assessment of their quality as repair rendering materials. Environ. Earth. Sci., 1–12.




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es