Materiales de Construcción, Vol 64, No 315 (2014)

Review of the use of phase change materials (PCMs) in buildings with reinforced concrete structures


https://doi.org/10.3989/mc.2014.05613

O. Pons
Universitat Politécnica de Catalunya – UPC, Spain

A. Aguado
Universitat Politécnica de Catalunya – UPC, Spain

A. I. Fernández
Universitat de Barcelona, Spain

L. F. Cabeza
GREA Innovació Concurrent, Universitat de Lleida, Spain

J. M. Chimenos
Universitat de Barcelona, Spain

Abstract


Phase change materials are capable of storing and releasing energy in the form of heat in determined temperature ranges, so to increase a building’s thermal inertia, stabilize its indoor temperatures and reduce its energetic demand. Therefore, if we used these materials we could have more energetically efficient buildings. Nevertheless, are these materials most appropriate to be used in buildings? Could the incorporation of phase change materials in buildings with concrete structures be generalized? This article aims to carry out a review of these phase change materials from construction professionals’ points of view, study their applications for buildings with reinforced concrete structures and the key points for these applications, draw conclusions and provide recommendations useful for all professionals within the sector who are considering the application of these materials.

Keywords


Phase Change Materials (PCM); Energy efficiency; Reinforced concrete; Structures

Full Text:


HTML PDF XML

References


1. Pérez-Lombard, L.; Ortiz, J.; Pout, C. (2008) A review on buildings energy consumption information. Energ. Buildings, 40 [3], 394–398. http://dx.doi.org/10.1016/j.enbuild.2007.03.007

2. European Comission (2011) Communication from the commission to the European Parliament, the Council, the European economic and social Committee and the Committee of the Regions. Energy Roadmap 2050, Com 2011 885/2. http://ec.europa.eu/energy/energy2020/roadmap/doc/com_2011_8852_en.pdf.

3. Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyam, T. (2011) Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sust. Energ. Rev., 15 [2], 1373–1391. http://dx.doi.org/10.1016/j.rser.2010.10.006

4. Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. (2004) A review on phase change energy storage: materials and applications. Energ. Convers. Manage., 45 [9–10], 1597–1615. http://dx.doi.org/10.1016/j.enconman.2003.09.015

5. Rubitherm (2013) PCM's in termal energy storage applications.¡ Available at: http://www.rubitherm.de/english/pages/04b_glossary_02.htm.

6. Granta Design Limited (2012) CES Selector 2012 software. Cambridge, UK. At: www.Grantadesign.com.

7. Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. (2011) Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sust. Energ. Rev., 15 [3], 1675–1695. http://dx.doi.org/10.1016/j.rser.2010.11.018

8. Al-Karaghouli, A.; Mujaly, L. (2004) Optimum thickness and heat storage capacity of thermal storage wall using different storage materials, Editor Sayigh, A.A.M., World Renewable Energy Congress VIII, Elsevier Ltd.

9. Kenisarin, M.; Mahkamov, K. (2007) Solar energy storage using phase change materials. Renew. Sust. Energ. Rev., 11 [9], 1913–1965. http://dx.doi.org/10.1016/j.rser.2006.05.005

10. Wadel, G. (2009). La sostenibilidad en la construcción industrializada. La construcción modular ligera aplicada a la vivienda (The sustainability of the industrialized architecture. Lightweight modular systems for housing). PhD thesis, UPC, Barcelona, Spain. Spanish digital version at http://www.tdx.cat/bitstream/handle/10803/6136/TGW01de13.pdf?sequence=1.

11. Pons, O. (2009). Arquitectura escolar prefabricada a Catalunya (Prefabricated school buildings in Catalonia). PhD thesis, Technical University of Catalonia (UPC), Barcelona, Spain. Spanish digital version at http://www.tdx.cat/handle/10803/6133.

12. Ling, T.; Poon, C. (2013) Use of phase change materials for thermal energy storage in concrete: An overview. Constr. Build. Mater., 46, 55–62. http://dx.doi.org/10.1016/j.conbuildmat.2013.04.031

13. Walter, A.M. (2013) Project - New energy efficient concrete prepared for industrialized production. Phase Change Materials (PCM) in precast concrete. http://www.dti.dk/projects/project-new-energy-efficient-concrete-prepared-for-industrialized-production/26870.

14. Meshgin, P.; Xi, Y. (2012) Effect of Phase-Change Materials on Properties of Concrete. ACI Mater. J., 109 [1], 71–80.

15. Abhat, A. (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy, 30, 313–32. http://dx.doi.org/10.1016/0038-092X(83)90186-X

16. Mehling, H.; Cabeza, L.F. (2007) Phase change materials and their basic properties. In: Paksoy H.O., editor. Thermal energy storage for sustainable energy consumption: fundamentals, case studies and design, 257–78, Kluwer Academic Publishers Group. http://dx.doi.org/10.1007/978-1-4020-5290-3_17

17. Mehling, H.; Cabeza, L.F. (2008) Heat and cold storage with PCM. An up to date introduction into basics and applications, Springer.

18. Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng., 23 [3], 251–83. http://dx.doi.org/10.1016/S1359-4311(02)00192-8

19. Wang, X.; Zhang, Y.; Xiao, W.; Zeng, R.; Zhang, Q.; Di, H. (2009) Review on thermal performance of phase change energy storage building envelope. Chinese Sci. Bull., 54, 920–8. http://dx.doi.org/10.1007/s11434-009-0120-8

20. Nagano, K.; Mochida, T.; Takeda, S.; Doman’ski, R.; Rebow, M. (2003) Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng., 23 [2], 229–241. http://dx.doi.org/10.1016/S1359-4311(02)00161-8

21. Oró, E.; Miró, L.; Barreneche, C.; Martorell, I.; Farid, M.M.; Cabeza, L.F. (2013) Corrosion of metal and polymer containers for use in PCM cold storage. Appl. Eng., 109, 449–453. http://dx.doi.org/10.1016/j.apenergy.2012.10.049

22. Hawes, D.W.; Banu, D.; Feldman, D. (1989) Latent heat storage in concrete. Sol. Energ. Mater., 19, 335–348. http://dx.doi.org/10.1016/0165-1633(89)90014-2

23. Hunger, M.; Entrop, A.G.; Mandilaras, I.; Brouwers, H.J.H.; Founti, M. (2009) The behavior of self-compacting concrete containing micro-encapsulated phase change materials. Cem Concr Comp., 31 [10], 731–43. http://dx.doi.org/10.1016/j.cemconcomp.2009.08.002

24. Rubitherm. CSM module. At: http://www.rubitherm.de/english/pages/02h_air_heating_systems.htm.

25. Xiao, M.; Feng, B.; Gong, K. (2002) Preparation and performance of shape stabilizes phase change thermal storage materials with high thermal conductivity. Energ. Convers. Manage., 43, 103–8. http://dx.doi.org/10.1016/S0196-8904(01)00010-3

26. Oliver, A.; Neila, F.J.; García-Santos, A. (2012) PCM choosing and classification according to their characteristics for their application for thermal energy storage systems. Mater. Construcc., 62 [305], 131–140. http://dx.doi.org/10.3989/mc.2012.58010

27. Giro-Paloma, J.; Oncins, G.; Barreneche, C.; Martínez, M.; Fernández, A.I.; Cabeza, L.F. (2012) Physico-chemical and mechanical properties of microencapsulated phase change material. Proceedings of the Innostock, The 12th International Conference on Energy Storage.

28. Kuznik, F.; David, D.; Johannes, K.; Roux, J. (2011) A review on phase change materials integrated in building walls. Renew. Sust. Energ. Rev., 15 [1], 379–391. http://dx.doi.org/10.1016/j.rser.2010.08.019

29. Sittisart, P.; Farid, M.M. (2011) Fire retardants for phase change materials. Appl. Energ., 88 [9], 3140–3145. http://dx.doi.org/10.1016/j.apenergy.2011.02.005

30. Behzadi, S.; Farid, M.M. (2012) Long term thermal stability of organic PCMs. Proceedings of the Innostock, The 12th International Conference on Energy Storage.

31. Kenisarin, M.; Kenisarina, K.M. (2012) Form-stable phase change materials for thermal energy storage. Renew. Sust. Energ. Rev., 16 [4], 1999– 2040. http://dx.doi.org/10.1016/j.rser.2012.01.015

32. Ge, H.; Li, H.; Mei, S.; Liu, J. (2013) Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area. Renew. Sust. Energ. Rev., 21, 331– 346. http://dx.doi.org/10.1016/j.rser.2013.01.008

33. Mapston, M.; Westbrook, C. (2010) Prefabrication building units and modern methods of construction MMC. Materials for energy efficiency and thermal comfort in buildings, edited by Hall, M.R., Woodhead publishing series in energy, 14.

34. Barkmann, H.G.; Wessling, F.C. (1975) Use of buildings structural components for thermal storage, Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlottesville, Virginia, USA.

35. Morikama, Y.; Suzuki, H.; Okagawa, F.; Kanki, K. (1985) A development of building elements using PCM. Proceedings of the International Symposiumon Thermal Application of Solar Energy, Hakone, Kana-gawa, Japan.

36. Telkes, M. (1978) Trombe wall with phase change storage material. Proceedings of the 2nd National Passive Solar Conference, Philadelphia, USA.

37. Stritih, U. (2003) Heat transfer enhancement in latent heat thermal storage system for buildings. Energ. Buildings, 35 [11], 1097–1104. http://dx.doi.org/10.1016/j.enbuild.2003.07.001

38. Hawes, D.W. (1991) Latent heat storage in concrete. PhD Thesis. Concordia University, Montreal, Quebec, Canada.

39. Hawes, D.W.; Feldman, D. (1992) Absorption of phase change materials in concrete. Sol. Energ. Mater. Sol. Cell., 27 [2], 91–101. http://dx.doi.org/10.1016/0927-0248(92)90112-3

40. Sakulich, A.R.; Bentz, D.P. (2012) Incorporation of phase change materials in cementitious systems via fine lightweight aggregate. Constr. Build. Mater., 35, 483–490. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.042

41. BASF. (2013) The Chemical Company. Construction Applications and Systems with Micronal® PCM. Gypsum wall board with Micronal® PCM. At: http://www.micronal.de/portal/basf/ien/dt.jsp?setCursor=1_290829.

42. Cabeza, L.F.; Castellón, C.; Nogués, M.; Medrano, M.; Leppers, R.; Zubillaga, O. (2007) Use of micro-encapsulated PCM in concrete walls for energy savings. Energ. Buildings, 39 [2], 113–119. http://dx.doi.org/10.1016/j.enbuild.2006.03.030

43. Paricio, I. (1999) La Construcción de la arquitectura. Itec, Barcelona.

44. Zalewski, L.; Joulin, A.; Lassue, S.; Dutil, Y.; Rousse, D. (2012) Experimental study of small-scale solar wall integrating phase change material. Sol. Energ., 86 [1], 208–219. http://dx.doi.org/10.1016/j.solener.2011.09.026

45. Oliver, A.; Neila, F. J.; García, A. (2011) Incorporación de materiales de cambio de fase en placas de yeso para almacenamiento de energía térmica mediante calor latente: caracterización térmica del material mediante la técnica DSC. Inf. Constr., 63 [522], 61–70. doi:10.3989/ic.09.039. http://dx.doi.org/10.3989/ic.09.039

46. Liu, H.; Awbi, H.B. (2009) Performance of phase change material boards under natural convection. Build. Environ., 44 [9], 1788–93. http://dx.doi.org/10.1016/j.buildenv.2008.12.002

47. Arzamendia, J.P.; Kuznik, F.; Baillis, D.; Yrieix, B. (2012) Optimization of materials for thermal energy storage in building walls. Proceedings of the Innostock, The 12th International Conference on Energy Storage.

48. ITEC (Catalan Institute of Construction Technology). (2010). BEDEC. Online: http://www.itec.cat/noumetabase2.c/Presentacio.aspx?page=bancbedec. Barcelona.

49. Harland, A.; Mackay, C.; Vale, B. (2010) Phase change materials in architecture SB 10 information and transformation. New Zealand Sustainable Building Conference, Stream 3b - Materials, products and building systems for sustainable, Wellington, New Zealand. Available at: building http://www.branz.co.nz/cms_display.php?sn=177&pg=7050&st=1.

50. Pe-alosa, C.; Lázaro, A.; Delgado, M.; Zalba, B. (2012) Looking for "low cost" Phase Change Materials and their application. Proceedings of the Innostock, The 12th International Conference on Energy Storage.

51. De Gracia, A.; Rincón, L.; Castell, A.; Jiménez, M.; Boer, D.; Medrano, M.; Cabeza, L.F. (2010) Life Cycle Assessment of the inclusion of phase change materials (PCM) in experimental buildings. Energ. Buildings, 42 [9], 1517–1523. http://dx.doi.org/10.1016/j.enbuild.2010.03.022

52. Castell, A.; Menoufi, K.; de Gracia, A.; Rincón, L.; Boer, D.; Cabeza, L.F. (2013) Life Cycle Assessment of alveolar brick construction system incorporating phase change materials (PCMs). Appl. Eng., 101, 600–608. http://dx.doi.org/10.1016/j.apenergy.2012.06.066

53. Khudhair, A.M; Farid, M.M. (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energ. Convers. Manage., 45 [2], 263–75. http://dx.doi.org/10.1016/S0196-8904(03)00131-6

54. Haurie, L.; Lacasta, A.M.; Realinho, V.; Velasco, J.I. (2012) Improvement of the fire behaviour of PCM in building applications. Proceedings of the Innostock, The 12th International Conference on Energy Storage.

55. Cho, T. (2007) Prediction of cyclic freeze–thaw damage in concrete structures based on response surface method. Constr. Build. Mater., 21 [12], 2031–2040. http://dx.doi.org/10.1016/j.conbuildmat.2007.04.018

56. Bentz, D.P.; Turpin, R. (2007) Potential applications of phase change materials in concrete technology. Cement Concrete Comp., 29 [7], 527–532. http://dx.doi.org/10.1016/j.cemconcomp.2007.04.007

57. van Haaren, M. (2011) Application of PCM in concrete. Improvement of the indoor comfort and reducing energy demand. Technische Universiteit Eindhoven. http:/alexandria.tue.nl/extra2/afstversl/bwk/749295.pdf.

58. UNE-EN 197-1:2000. (2000). Cement - Part 1: Composition, specifications and conformity criteria for common cements.

59. Oliver, A. (2009) Integración de materiales de cambio de fase en placas de yeso reforzadas con fibras de polipropileno aplicación a sistemas de refrigeración y calefacción pasivos para almacenamiento de calor latente en edificios. E.T.S. Arquitectura (UPM). Directores: Garcia, A., Neila, F.J. http://oa.upm.es/2910/1/ALICIA_OLIVER_RAMIREZ.pdf.

60. Beshr, H.; Almusallam, A.A.; Maslehuddin, M. (2003) Effect of coarse aggregate quality on the mechanical properties of high strength concrete. Constr. Build. Mater., 17 [2], 97–103. http://dx.doi.org/10.1016/S0950-0618(02)00097-1

61. Al-Harthy, A.S.; Abdel Halim, M.; Taha, R.; Al-Jabri, K.S. (2007) The properties of concrete made with fine dune sand. Constr. Build. Mater., 21 [8], 1803–1808. http://dx.doi.org/10.1016/j.conbuildmat.2006.05.053

62. BOE (Boletín Oficial del Estado) (2008) Instrucción de Hormigón Estructural EHE-08. Ministerio de la Presidencia, Madrid.

63. Llorens, J.I., Pons, O., Ruiz, B. (2013) El Terreny i l'estudi geotècnic. Edicions UPC.

64. Castell, A.; Martorell, I.; Medrano, M.; Pérez, G.; Cabeza, L.F. (2010) Experimental study of using PCM in brick constructive solutions for passive cooling. Energ. Buildings, 42 [4], 534–540. http://dx.doi.org/10.1016/j.enbuild.2009.10.022

65. Ostry, M.; Klubal, T.; Charvat, P.; Klimes, L. (2012) Comparison of different latent heat storage techniques integrated in building structures. Proceedings of the Innostock, The 12th International Conference on Energy Storage.

66. Cerón, I.; Neila, J.; Khayet, M. (2011) Experimental tile with phase change materials (PCM) for building use. Energ. Buildings, 43 [8], 1869–1874. http://dx.doi.org/10.1016/j.enbuild.2011.03.031

67. Oliver, A.; Neila, F.J.; García, A. (2011) Physical and mechanical characterization of gypsum boards containing phase change materials for latent heat storage. Mater. Construcc. 61 [303], 465–484.

68. Neila, J.; Acha, C.; Higueras, E.; Bedoya, C. (2008) Phase Change Materials (PCMs) for energy storage in architecture. Use with the Magic Box prototype. Mater. Construcc., 58 [291], 119–126.

69. Kuznik, F.; Virgone, J.; Johannes, K. (2010) Development and validation of a new TRNSYS type for the simulation of external building walls containing PCM. Energ. Buildings, 42 [7], 1004–1009. http://dx.doi.org/10.1016/j.enbuild.2010.01.012




Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es