Materiales de Construcción, Vol 59, No 296 (2009)

Study of the decalcification process in mortars degraded by NH4NO3 by using ultrasonic techniques

I. Segura
Instituto de Automática Industrial (CSIC), Madrid, Spain

A. Moragues
Universidad Politécnica de Madrid, Spain

D. E. Macphee
Universidad de Aberdeen, United Kingdom

J. J. Anaya
Instituto de Automática Industrial (CSIC), Madrid, Spain

M. Molero
Instituto de Automática Industrial (CSIC), Madrid, Spain


Water takes part in most if not all of the degradation processes experienced by cement-based materials during their service-life. The effect of pure water usually is not of primary concern as it involves very lengthy degradation diffusion controlled processes; aqueous solutions are more aggressive, promoting increased solubility of matrix components and microstructure modification due to leaching. The ability to monitor such changes nondestructively presents a number of challenges as, often, conventional characterisation techniques require sample preparation likely to modify the properties of interest. In this study, ultrasonic pulse velocity profiles have provided a nondestructive means of monitoring microstructural changes during aggressive leaching of blastfurnace slag cement mortars with ammonium nitrate solutions. These data are compared with corresponding analyses by destructive techniques including mercury intrusion porosimetry (MIP), water porosity measurements, X-ray diffraction (XRD) and scanning electron microscopy (SEM). By analysing degraded ultrasonic velocity profiles it has been possible to calculate degraded depths in the samples, which correlate well with those results obtained by conventional methods.


mortar; durability; ageing; microstructure; characterization

Full Text:



(1) EHE-99 “Instrucción Española de Hormigón Estructural”. Ministerio de Fomento, España, 1999.

(2) Berner, U. R.: “Modelling the incongruent dissolution of hydrated cement minerals”. Radiochim. Acta, vol. 44/45, nº (1988), pp. 387- 393.

(3) Porteneuve, C.; Zani, H.; Vernet, C.; Kjellsen, K.; Korb, J.-P., y Petit, D.: “Nuclear magnetic resonance characterization of high- and ultrahigh-performance concrete: Application to the study of water leaching”. Cem. Concr. Res., vol. 31, nº 12 (2001), pp. 1887-1894. doi:10.1016/S0008-8846(01)00648-2

(4) Cardé, C.; Escadeillas, G.; y Francois, R.: “Use of ammonium nitrate solution to simulate and accelerate the leaching of cement pastes due to deionised water”. Mag. Concr. Res., vol. 49, nº 181 (1997), pp. 295-301. doi:10.1680/macr.1997.49.181.295

(5) Saito, H., y Deguchi, A.: “Leaching tests on different mortars using accelerated electrochemical method”. Cem. Concr. Res., vol. 30, nº (2000), pp. 1815-1825.

(6) Jauberthie, R., y Rendell, F.: “Physicochemical study of the alteration surface of concrete exposed to ammonium salts”. Cem. Concr. Compos., vol. 33, nº (2003), pp. 85-91.

(7) Le Bellego, C.; Gèrard, B.; y Pijaudier-Cabot, G.: “Chemo-mechanical effects in mortar beams subjected to water hydrolysis”. J. Eng. Mech., vol. 126, nº 3 (2000), pp. 266-272. doi:10.1061/(ASCE)0733-9399(2000)126:3(266)

(8) Heukamp, F. H. Tesis doctoral: “Chemomecanics of Calcium Leaching of Cement-Based Materials at Different Scales: The Role of CH-Dissolution and CSH Degradation on Strength and Durability Performance of Materials and Structures”. Massachusetts Institute of Technology. 2003.

(9) Samson, E., and Marchand, J.: "Modeling the transport of ions in unsaturated cement-based materials". Comp. Struc., Vol. 85, nº 23-24 (2007), pp. 1740-1756.

(10) Panet, M.; Cheng, C.; Deschamps, M.; Poncelet, O., y Audoin, B.: “Microconcrete ageing ultrasonic identification”. Cem. Concr. Res., vol. 32, nº (2002), pp. 1831-1838.

(11) Naffa, S. O.; Goueygou, M.; Piwakowski, B.; y Buyle-Bodin, F.: “Detection of chemical damage in concrete using ultrasound”. Ultrasonics, vol. 40, nº (2002), pp. 247-251.

(12) Burlion, N.; Bernard, D., y Chen, D.: “X-Ray microtomography: Application to microstructure analysis of a cementitious material during leaching process”. Cem. Concr. Res., vol. 36, nº 2 (2006), pp. 346-357. doi:10.1016/j.cemconres.2005.04.008

(13) Hernández, M. G.; Anaya, J. J.; Ullate, L. G.; Cegarra, M., y Sánchez, T.: “Application of a micromechanical model of three phases to estimating the porosity of mortar by ultrasound”. Cem. Concr. Res., vol. 36, nº 4 (2006), pp. 617-624. doi:10.1016/j.cemconres.2004.07.018

(14) Hernández, M. G.; Anaya, J. J.; Ullate, L. G., y Ibáñez, A.: “Formulation of a new micromechanic model of three phases for ultrasonic characterization of cement-based materials”. Cem. Concr. Res., vol. 36, nº 4 (2006), pp. 609-616. doi:10.1016/j.cemconres.2004.07.017

(15) Hernández, M. G.; Anaya, J. J.; Izquierdo, M. A. G., y Ullate, L. G.: “Application of micromechanics to the characterization of mortar by ultrasound”. Ultrasonics, vol. 40, nº 1-8 (2002), pp. 217-221.

(16) Hernández, M. G.; Anaya, J. J.; Sánchez, T., y Segura, I.: “Porosity estimation of aged mortar using a micromechanical model”. Ultrasonics, vol. 44, nº 1 (2006), pp. e1007-e1011. doi:10.1016/j.ultras.2006.05.195 PMid:16814349

(17) Segura, I.; Anaya, J. J.; Hernández, M. G.; Macphee, D. E.; Moragues, A., y Sánchez, T.: “Microstructural characterization of aged mortar by destructive and non-destructive testing”, en 12th International Congress on the Chemistry of Cement, Montreal, Canadá. 2007.

(18) UNE-EN 196-1 Métodos de ensayo de cementos. Parte 1: Determinación de resistencia mecánicas AENOR, 1996.

(19) Heukamp, F. H.; Ulm, F., y Germaine, J. T.: “Mechanical properties of calcium-leached cement pastes. Triaxial stress states and the influence of the pore pressures”. Cem. Concr. Res., vol. 31, nº (2001), pp. 767-774.

(20) Le Bellego, C.; Pijaudier-Cabot, G.; Gérard, B.; Dubé, J.-F., y Molez, L.: “Coupled mechanical and chemical damage in calcium leached cementitious structures”. J. Eng. Mech., vol. 129, nº 3 (2003), pp. 333-341. doi:10.1061/(ASCE)0733-9399(2003)129:3(333)

(21) Constantinides, G. y Ulm, F.: “The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling”. Cem. Concr. Res., vol. 34, nº (2004), pp. 67-80.

(22) Guillon, E. Tesis doctoral: “Durabilité des matériaux cimentaires - Modélisation de l’influence des équilibres physico-chimiques sur la microstructure et les propiétés mécaniques résiduelles”. Laboratorie de Mécanique et Technologie, L’Ecole Normale Supérieure de Cachan. 2004.

(23) Moranville, M.; Kamali, S., y Guillon, E.: “Physicochemical equilibria of cement-based materials in aggressive environments - experiment and modelling”. Cem. Concr. Res., vol. 34, nº (2004), pp. 1569-1578.

(24) Perlot, C.; Verdier, J., y Carcassès, M.: “Influence of cement type on transport properties and chemical degradation: Application to nuclear waste storage”. Mater. Struct., vol. 39, nº (2006), pp. 511-523.

(25) García de Arriba, R.; Sagrado, J. D., y Madrazo, J. A. P.: “Determinación de la porosidad y la permeabilidad del hormigón endurecido”. Hormigón y Acero, vol. 193, nº (1994), pp. 105-116.

(26) RILEM-TC/14-CPC: “CPC 11.3 Absorption d’eau par immersion sous vide / Absorption of water by immersion under vacuum”. Mater. Struct., vol. 17, nº 101 (1984), pp. 391-394.

(27) Pascual, M. A. Tesis doctoral: “Estudio y extensión de un modelo micromecánico trifásico para la caracterización ultrasónica de materiales compuestos”. Dpto. de Ing. Civil: Construcción. ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid. 2007.

(28) Le Bellego, C. Tesis doctoral: “Couplage chimie-mecanique dans les structures en beton attaquees par l’eau: Etude experimentale et analyse numerique”. Laboratoire de Mécanique et Technologie - ENS Cachan, Ecole Normale Superieure de Cachan. 2001.

(29) Cardé, C.; Francois, R., y Torrenti, J.: “Leaching of both calcium hydroxide and CSH from cement paste: modelling the mechanical behaviour”. Cem. Concr. Res., vol. 26, nº 8 (1996), pp. 1257-1268. doi:10.1016/0008-8846(96)00095-6

(30) Faucon, P.; Adenot, F.; Jacquinot, J. F.; Petit, J. C.; Cabrillac, R., y Jorda, M.: “Long-term behaviour of cement pastes used for nuclear waste disposal: Review of physico-chemical mechanisms of water degradation”. Cem. Concr. Res., vol. 28, nº 6 (1998), pp. 847- 857. doi:10.1016/S0008-8846(98)00053-2

(31) Haga, K.; Sutou, S.; Hironaga, M.; Tanaka, S., y Nagasaki, S.: “Effects of porosity on leaching of Ca from hardened ordinary Portland cement paste”. Cem. Concr. Res., vol. 35, nº 9 (2005), pp. 1764-1775. doi:10.1016/j.cemconres.2004.06.034

(32) Cardé, C. y Francois, R.: “Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties”. Cem. Concr. Res., vol. 27, nº 4 (1997), pp. 539-550. doi:10.1016/S0008-8846(97)00042-2

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support