Materiales de Construcción, Vol 59, No 296 (2009)

Hydration and microstructure of Portland cement partially substituted with ultrafine silica


https://doi.org/10.3989/mc.2009.46108

L. Y. Gómez-Zamorano
Universidad Autónoma de Nuevo León, Monterrey, Mexico

J. I. Escalante
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Saltillo, Mexico

Abstract


Geothermal waste, a by-product of steam power plants that use geothermal underground resources, was studied as a possible replacement for Portland cement. This waste consists primarily in amorphous nanometric silica with traces of sodium and potassium chlorides. The replacement ratios studied were 0, 10 and 20% in cements cured at 20 and 60 ºC. X-ray diffraction analysis showed that clinker phase hydration took place earlier in the presence of the geothermal waste. Scanning electron microscopy, in turn, revealed a reduction in porosity and intense calcium hydroxide consumption as a result of the pozzolanic reaction. The pastes containing 20% waste, however, an intense cracking was observed due to the formation of alkali silica reaction gel and ettringite. Cracking was more prominent at 60 ºC but was not observed in either the neat cement or the blend with 10 % waste. The presence of these detrimental phases was attributed to the formation of Friedel’s salt in the initial hydration stages, induced by the chlorides in the geothermal material.

Keywords


geothermal waste; degree of hydration; ettringite; alkali silica reaction gel; composite cements

Full Text:


PDF

References


(1) Taylor, H. F. W.: Cement Chemistry, segunda edición, Telford Publishing, 1997. doi:10.1680/cc.25929

(2) Patente: “Process for using sludge from geothermal brine to make concrete and concrete composition”. Número de patente: 4900360. Inventores: Olin D. Whitescarver, Indian Wells; Jonathan T. Kwan (1990), E. U.

(3) Díaz, C.; Rincón, J. M.: “Tratamiento químico de la escoria de sílice de una planta geotérmica para su aplicación en cerámica y vidrio”, Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 29 (1990), pp. 181-184.

(4) Gómez-Zamorano, L. Y.: Tesis doctoral: “Geothermal waste as a replacement material of Portland cement pastes”, Cinvestav – Unidad Saltillo, México (2004).

(5) Toutanji, H. A.; El-Korchi, T.: “The influence of silica fume on the compressive strength on cement paste and mortar”, Cem. Concr. Res., vol. 25 (1995), pp. 1591-1602. doi:10.1016/0008-8846(95)00152-3

(6) Nehdi, M.; Duquette, J.; El Damaty, A.: “Performance of rice husk ash produced using a new technology as a mineral admixture in concrete”, Cem. Concr. Res., vol. 33 (2003), pp. 1203-1210. doi:10.1016/S0008-8846(03)00038-3

(7) Anderson, D.; Roy, A.; Seals, R. K.; Cartledge, F. K.; Akhter, H.; Jones, S. C.: “A preliminary assessment of the use of an amorphous silica residual as a supplementary cementing material”, Cem. Concr. Res., vol. 30 (2000), pp. 437-445. doi:10.1016/S0008-8846(99)00269-0

(8) Cheng-Yi, H.; Feldman, R. F.: “Hydration Reactions in Portland Cement - Silica Fume Blends”, Cem. Concr. Res., vol. 15 (1985), pp. 582-592.

(9) Yogendran, V.; Langan, B. W.; Ward, M. A.: “Hydration of cement and silica fume paste”, Cement and Concrete Research, vol. 21 (1991), pp. 691-708. doi:10.1016/0008-8846(91)90164-D

(10) Gutteridge, W. A.; Dalziel, J. A.: “The effect of a secondary component on the hydration of Portland cement, Part I, Fine hydraulic binders”, Cem. Concr. Res., vol. 20 (1990), pp. 853-861. doi:10.1016/0008-8846(90)90046-Z

(11) Escalante-García, J. I.; Sharp, J. H.: “Effect of temperature on the hydration of the main clinker phases in Portland cements: Part II, blended cements”, Cem. Concr. Res., vol. 28 (1998), pp. 1259. doi:10.1016/S0008-8846(98)00107-0

(12) Gaitero, J. J.; Campillo, I.; Guerrero, A.: “Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles”, Cem. Concr. Res. (2008), doi:10.1016/j.cemconres.2008.03.021. doi:10.1016/j.cemconres.2008.03.021

(13) Shih, J. Y.; Chang, T. P.; Hsiao, T. C.: “Effect of nanosilica on characterization of Portland cement composite”, Materials Science and Engineering A, vol. 424 (2006), pp. 266-274. doi:10.1016/j.msea.2006.03.010

(14) Jo B. W.; Kim C. H.; Tae, G.; Park, J. B.: “Characteristics of cement mortar with nano-SiO2 particles”, Construction and Building Materials, vol. 21 (2007), pp. 1351-1355. doi:10.1016/j.conbuildmat.2005.12.020

(15) Qing, Y.; Zenan, Z.; Deyu, K.; Rongshen, C.: “Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume”, Construction and Building Materials, vol. 21 (2007), pp. 539-545. doi:10.1016/j.conbuildmat.2005.09.001

(16) Li, H.; Xiao, H. G.; Yuan, J.; Ou J.: “Microstructure of cement mortar with nano-particles”, Composites: Part B 35 (2004), pp. 185–189. doi:10.1016/S1359-8368(03)00052-0

(17) Gutteridge, W. A.: “Quantitative X-Ray Powder Diffraction In The Study Of Some Cementive Materials”, British Ceramics Proceedings, nº 35, The Chemistry and Chemical Related Properties of Cement (1984), pp. 11-23.

(18) Gómez-Zamorano, L. Y.; Escalante-García, J. I.; Mendoza-Suárez, G.: “Geothermal waste: An alternative replacement material of Portland cement”, Journal of Materials Science, 39 (2004), pp. 4021- 4025. doi:10.1023/B:JMSC.0000031486.70227.dc

(19) Escalante-García, J. I.; Mendoza, G.; Mancha, H.; López, J.; Vargas, G.: “Pozzolanic properties of a geothermal silica waste material”, Cem. Concr. Res., vol. 29 (1999), pp. 623-625. doi:10.1016/S0008-8846(98)00238-5

(20) Gómez-Zamorano, L. Y., Escalante-García, J. I.: “Effect of the curing temperature on the non evaporable water in Portland cement blended with geothermal waste”, Cement and Concrete Composites, en revisión.

(21) Yang, R.; Sharp, J. H.: “Hydration characteristics of Portland cements after heat curing: I, Degree of hydration of the anhydrous cement phases”, Journal of American Ceramic Society, vol. 84 (2001), pp. 608-614. doi:10.1111/j.1151-2916.2001.tb00707.x

(22) Escalante-García, J. I.; Sharp, J. H.: “Effect of temperature on the hydration of the main clinker phases in Portland cements: Part I, neat cements”, Cem. Concr. Res., vol. 28 (1998), pp. 1245-1257. doi:10.1016/S0008-8846(98)00115-X

(23) http://www.gimp.org/

(24) Scrivener, K. L.: “Backscattered electron imaging of cementitious microstructures: understanding and quantification”, Cement and Concrete Composites, vol. 26 (2004), pp. 935–945. doi:10.1016/j.cemconcomp.2004.02.029




Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es