Materiales de Construcción, Vol 59, No 296 (2009)

Re-use of incinerated agro-industrial waste as pozzolanic addition. Comparison with spanish silica fume

R. Talero
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC), Madrid, Spain

C. Pedrajas
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC), Madrid, Spain

A. Delgado
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc-CSIC), Madrid, Spain

V. Rahhal
Universidad Central de la Provincia de Buenos Aires, Buenos Aires, Argentina


This study attempted to determine the viability of using incinerated agro-industrial waste, ashes C1 and C2, as possible artificial pozzolanic additions in traditional and highperformance concretes and mortars, mainly, and for this reason, a comparative study was likewise conducted with Spanish silica fume (HS). The conclusion drawn from the findings was that the two ashes used could be regarded to be centainly, silicic artificial pozzolanic additions but only C2, which had a higher SiO2 content, could be regarded to be a “microsilica”, however, because its loss on ignition, L.O.I., fell within the acceptable range of variability. In contrast, C1 could not be so regarded because its L.O.I. was too high, despite its higher reactive silica SiO2r- content. For this reason, ash C1 had to be ruled out for any of the proposed uses, even though in terms of chemical and sulfatic characterization it was closer to HS than C2. By contrast, the mechanical strength values of C2 and HS were comparable, making the former initially acceptable for any of such uses. Finally, it has also been justified that, adoption of any method of trial to determine potential resistance to the sulfates of the Portland cements with calcareous filler lacks of sense.


agro-industrial ashes; pozzolanic additions; microsilica; Portland cement; sulfate attack

Full Text:



(1) Sata, V.; Juturapitakkul, C.; Kiattikomol, K.: “Influence of puzzolan from varius by-product materials on mechanical properties of high-strength concrete”. Construccion and Building Materials, 24 (2007), pp. 1589-1598. doi:10.1016/j.conbuildmat.2005.09.011

(2) Malholtra, V. M.; Mehta, P. K.: “Puzzolanic and Cementitious Materiales”. Gordon & Breach Publishers, Amsterdam, 1996.

(3) Schieltz, N. C.: “The interpretación of X-Ray patterns of puzzolans”. Symp. Use Pozz. Mater. Mort. Concr. ASTM Special Tec. Publ. 99 (1950), pp.127-130.

(4) Diamond, S.: “On the glasses present in law-calcium and high-calcium fly ashes”. Cem. Concr. Res., vol. 13, nº 4 (1983), pp. 459-464. doi:10.1016/0008-8846(83)90002-9

(5) Mehta, P. K.: “Mineral Admixtures”. Concrete Admixtures Handbook. Notes Publication, Park Ridge, N. J. 303, 1984.

(6) Talero, R.: “Qualitative Analysis of Natural Puzzolans, Fly Ashes and Blast Furnace Slags”. Journal of Materials in Civil Engineering, vol. 2, (1990), pp. 106-115. doi:10.1061/(ASCE)0899-1561(1990)2:2(106)

(7) Moya, J. S.; Aza, S.; Sanz, J.; Madani, A.; Serratosa, J. M.: “Aluminum-27 and Silicon-29 Magic-Angle Spinning Magnetic Resonance Sutdy of the Kaolinite-Mullite Transformation”. J. Am. Ceram. Soc., vol. 71, nº 10, (1998), pp. C-418-C-421.

(8) Taylor, H. F. W.: “La química de los cementos”, vol. II., cap. 14. Ediciones Urmo, C/ Espartero, 10, Bilbao, España, 1971.

(9) ASTM C 618-94a Standard: “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolans for Use as a Mineral Admixture in Portland Cement Concrete”. Annual of Book of ASTM Standards, Section 4 Construction, vol. 04.02, Concrete and Aggregates, pp. 304-309, 1995.

(10) Talero, R.: “Contribution to the Analytical and Physical-Chemistry Study of the System: Pozzolanic Cements-Gypsum-Water (at 20 ± 2 °C)”. Ph. D. Thesis, Complutense University of Madrid, Ftad. CC. Químicas, 20th nov. 1986.

(11) Talero, R.; Bollati, M-R.; Hernández-O. F.: “Manufacturing non-traditional mortars and concretes by OPC, metakaolin and gypsum (15.05%)”. Mater. Construcc., vol. 49, nº 256 (1999), pp. 29-41.

(12) Talero, R.: “Kinetochemical and morphological differentiation of ettringites by metakaolin, Portland cements and the Le Chatelier- Ansttet test. Parameter: Vicat Needle Penetration”. Silicates Industriels, vol. 68, nº 11-12 (nov./dec. 2003), pp.137-146.

(13) Talero, R.: “Performance of metakaolin and Portland cements in ettringite formation as determined by ASTM C 452-68: Kinetic and morphological differences”. Cem. Concr. Res., 35 (7) (2005), pp. 1269-1284. doi:10.1016/j.cemconres.2004.10.002

(14) Talero, R: “Performance of metakaolin and Portland cements in ettringite formation as determined by the Le Chatelier-Ansttet test: Kinetic and morphological differences and new specification”. Silicates Industriels., vol. 72, nº 11-12 (2007), pp.191-204.

(15) Talero, R.: “Kinetic and morphological differentiation of ettringites by metakaolin, Portland cements and ASTM C 452-68 test. Part I: Kinetic differentiation. Mater. Construcc., nº 292, vol. 58 (2008), pp. 45-68. doi:10.3989/mc.2008.30805

(16) Talero, R.: “Kinetic and morphological differentiation of ettringites by metakaolin, Portland cements and ASTM C 452-68 test. Part II: Morphological differentiation by SEM and XRD analysis”. Mater. Construcc., nº 293, vol. 59 (2009), pp. 35-51. doi:10.3989/mc.2009.30805

(17) Talero, R.: “Comportamento de cimentos con microsílica contra ataque do yeso”. Congreso Nacional do Química do Cimento, ACTAS, Río de Janeiro, Brasil, 1993.

(18) Chindaprasirt, P.; Kanchanda, P.; Sathonsaowaphak, A.; Cao, H. T.: “Sulfate resistance of blended cements containing fly ash and rice husk ash”. Construccion and Buildings Materials, vol. 21 (2007), pp. 1356-1361. doi:10.1016/j.conbuildmat.2005.10.005

(19) Mejía, R.: “Contribución al Estudio Analítico y Físico-Químico del Sistema: Cemento-Puzolanas y Escorias Siderúrgicas-Cloruros- Agua”. Tesis Doctoral, Univ. Complutense de Madrid, Ftad. de CC. QQ., 29 mayo 1997.

(20) Mejía, R.; Delvasto, S.; Talero, R.: “Chloride diffusion measured by a modified permeabilty test in normal and blended cements”. Advances in Cement Research 15 (3) (july 2003) 13-118.

(21) Mejía, R.; Delvasto, S.; Talero, R.: “A new pozzolan for high performance cementitious materials”. Mater. Constr., vol. 50, nº 260 (2000), pp. 5-13.

(22) Fair, D.; Fraaij, A.; Klaassen, A.; Kentgens, A.: “A structural investigation relating to de puzzolanic activity of rice husk ashes”. Cem. Concr. Res., vol. 38 (2008), pp. 861-869. doi:10.1016/j.cemconres.2007.10.004

(23) James, J.; Subba Rao, M.: “Reactivity of rice husk ash”. Cem. Concr. Res., vol. 16 (1986), pp. 296-302. doi:10.1016/0008-8846(86)90104-3

(24) Zhang, M. H.; Lastra, R.; Malhotra, V. M.: “Rice-Husk ash paste and concrete: some aspects of hydratation and the microstructure of the interfacial zone between the aggregate and paste”. Cem. Concr. Res., vol. 26 (1996), pp. 963-977. doi:10.1016/0008-8846(96)00061-0

(25) Rahhal, V.: “Characterization of Pozzolanic Additions by Conduction Calorimetry”. Ph. D. Thesis, Politechnic University of Madrid, ETS Ings. Caminos, Canales y Puertos, Madrid, 12 dic. 2002.

(26) Rahhal, V.; Cabrera, O.; Talero, R.; Delgado A.: “Calorimetry of Portland cement with silica fume and gypsum additions”. J. Therm. Anal. Cal., vol. 87, nº 2 (2007), pp. 331-336. doi:10.1007/s10973-005-7324-1

(27) Talero, R.; Rahhal, V.: “Calorimetric comparison of Portland cement containing silica fume and metakaolin: Is silica fume, like metakaolin, characterized by pozzolanic activity that is more specific than generic?” J. Therm. Anal. Cal., vol. 96, nº 2 (2009), pp. 383- 393. doi:10.1007/s10973-008-9096-x

(28) Talero, R.: “Sulphatic characterization of pozzolanic additions: accelerated methods of the test to determine it (Le Chatelier-Ansttet and ASTM C 452-68 tests)”. 10th Intern. Coal Ash Symposium, Proceedings, vol. 2, section 8: Concrete III, Orlando-Florida-USA, January 1993.

(29) Norma UNE EN 13263-1:2006: Adiciones al Hormigón. Humo de Sílice. Parte 1: Definiciones, requisitos y criterios de conformidad. AENOR, calle Génova nº 5; 28004 Madrid.

(30) Norma UNE 80225:1993 EX: “Métodos de ensayo de cementos. Análisis químico. Determinación del dióxido de silicio (SiO2) reactivo en los cementos, en las puzolanas y en las cenizas volantes”. AENOR.

(31) Pliego de Prescripciones Técnicas Generales para la Recepción de Cementos en España, RC-75 (Decreto de PG 1964/1975 de 23 de mayo; BOE nº 206 de 28 de agosto de 1975).

(32) Instrucción para la Recepción de Cementos RC-08 (R. D. 956/2008 de 6 de junio (BOE nº 148 del 19 de junio de 2008).

(33) ASTM C 311-07 Standard: Standard Test Methods for Sampling and Testing Fly Ash or Natural Puzzolans for Use in Portland-Cement Concrete. Annual Book of ASTM Standard, vol. 04.02.

(34) ASTM C 114-07 Standard: Standard Test Methods for Chemical Analysis of Hydraulic Cement. Annual Book of ASTM Standard, Vol 04.01. Cement; Lime; Gypsum.

(35) Norma UNE 80112: 1986: “Métodos de ensayo de cementos. Ensayos físicos. Determinación de la densidad real mediante el volumenómetro de Le Chatelier”. AENOR.

(36) NORMA UNE EN 196-6: 2005: “Métodos de ensayo de cementos. Determinación de la finura”. AENOR

(37) Bollati, M.: “Properties of Soller Compacted and Vibrated Concrete at Early ages, Evaluation through Ultrasonic Energy Measurements”. 6th. Int. Symp. on Concrete Roads, Madrid, 8-10 oct. (1990), pp. 83-92.

(38) ASTM Bulletin 212: “A Performance test for the Potential Sulfate Resistance of Portland Cement”. Reported by the Working Committee on Sulfate Resistance of ASTM Committee C-1 on Cement, February 1956, pp. 37-44.

(39) Norma ASTM C 452-68: Standard test Method for Potencial Expansion of Portland Cement Mortars Exposed to Sulfate. Annual Book of ASTM Standard, vol. 04.01. Cement; Lime; Gypsum.

(40) Blondiau, L.: “Considerations diverses relatives a lessai de resistenza chimique au sulphate de calcium suivant le proceus Le Chatelier-Anstett”. Rev. Mat. Constr. Trav. Pub., nº 524, nº 546 (1961).

(41) Rahhal, V.; Bonavetti, V.; Delgado, A.; Pedrajas, C.; Talero, R.: “Scheme of the portland cement hydration with crystalline mineral admixtures and other aspects”. Silicates Industriels, vol. 74, nos 11-12 (2009), pp. 347-352.

(42) Talero, R.: “Los Cementos Portland de Moderada Resistencia Sulfática. Métodos acelerados de ensayo para determinarla. Bases para su caracterización y control”. Monografía nº 399 del IETcc-CSIC, 1999.

(43) ASTM C 150-07 Standard: Standard Specification of Portland Cement. Annual Book of ASTM Standard, Vol 04.01. Cement; Lime; Gypsum.

(44) Norma UNE 80216: 1991 EX: “Métodos de ensayos de cementos. Determinación cuantitativa de los componentes”. AENOR.

(45) Instrucción de Hormigón Estructural EHE (R.D. 2661/1998 de 11 de diciembre).

(46) Farmer, V. C.: “Infrared spectroscopy in clay mineral studies”. Clay Materials, vol. 7 (1965), pp. 373-378. doi:10.1180/claymin.1968.007.4.01

(47) Rahhal, V.; Cabrera, O.; Talero, R.: “C4AF ettringite and calorific synergic effect contribution”. J. Therm. Anal. Cal. Online first, 13-07-2009; (en prensa / in press).

(48) Spanish Standard for Roads PG3. Ministerio de Obras Públicas, Transportes, Comunicaciones y Medio Ambiente, Pº de la Castellana, Madrid, Spain, 1994.

(49) Talero, R.: “El ahorro de energía en la fabricación de cemento: Últimos avances sobre las adiciones puzolánicas” (Saving energy manufacturing cement: latest advances about pozzolanic additions). Informes de la Construcción, vol. 38, nº 385 (1988), pp. 71-74.

(50) Jaspers, M. J. M.: “Contribution à l’étude experimentale de la mesure par l’essai Le Chatelier-Anstett (L-A) de la résistance des ciments aux sulfates et chlorures”. Rev. Mater. Constr. Trav. Publics, nº 633-634 (1968), pp. 244-256.

(51) Jaspers, M. J. M.: “Contribution à l’étude experimentale de la mesure de la résistance aux sulfates des ciments selon la método ASTM C 452-68”. Rev. Mater. Constr. Trav. Publics, nº 656 (1970), pp. 135-143.

(52) Calleja, J.; Aguanell, M.: “Consideraciones sobre el ensayo de ANSTTET y el comportamiento de los cementos frente a los sulfatos”. Mater. Construcc., nº 179 (1980), pp. 39-48.

(53) PrEN 197-1:2007 Standard: “Cement - Part I: Composition, specifications and conformity criteria for common cements”. CEN/TC 51, Date 20007-08; Secretariat NBN, CRIC, Rue Volta 10 - B 1050 BRUXELLES.

(54) Delgado, A.: “A contribution to the analysis and study of the aggregate-portland cement paste interface”. PhD Thesis, next upcoming defence at the Chemical Engineering Department of the University of Castilla-La Mancha, Spain (‘in Spanish’).

(55) Tosum, K.; Felekoglu, B.; Baradan, B.; Akin Altun, I.: “Effects of limestone replacement ratio on the sulfate resistance of Portland cement limestone cements mortars exponed to extraordinary high sulphate concentration”. Construction & Building Materials, vol. 23 (2009), pp. 2534-2544. doi:10.1016/j.conbuildmat.2009.02.039

(56) ASTM C 230 Standard: Standard Specification for Flow Table for Use in Tests of Hydraulic Cement. ANNUAL BOOK OF ASTM STANDARDS, Section 4 Construction, vol. 04.01 Cement; Lime; Gypsum, pp. 178-182.

(57) Cohen, D.; Mather, B.: “Sulfate attack on concrete-research needs”. ACI Mater. J., vol. 1, (1991), pp. 62-69.

(58) ASTM C 1012 Standard: Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. Annual Book of Astm Standards, Section 4 Construction, vol. 04.01 Cement; Lime; Gypsum, pp. 450-454, 1995.

Copyright (c) 2009 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support