Materiales de Construcción, Vol 56, No 284 (2006)

Transfer and anchorage bond behaviour in self-compacting concrete


https://doi.org/10.3989/mc.2006.v56.i284.16

J. R. Martí-Vargas
Departamento de la Ingeniería de Construcción y Proyectos de Ingeniería Civil.Universidad Politécnica de Valencia., Spain

P. Serna-Ros
Departamento de la Ingeniería de Construcción y Proyectos de Ingeniería Civil.Universidad Politécnica de Valencia., Spain

C. A. Arbeláez
Departamento de la Ingeniería de Construcción y Proyectos de Ingeniería Civil.Universidad Politécnica de Valencia., Spain

J. W. Rigueira-Víctor
Departamento de la Ingeniería de Construcción y Proyectos de Ingeniería Civil.Universidad Politécnica de Valencia., Spain

Abstract


Self-compacting concretes (SCC) provide solutions to the problems facing precast concrete construction, enhancing competitiveness, reducing turnaround times and improving final product quality. SCC is fast becoming a key product for the future development of the precast pre-stressed concrete industry.
The present paper compares the bond performance of SCC and traditional concrete (TC). The bond performance results confirm the viability of SCC in precast pre-stressed concrete manufacture, despite a slightly higher loss of pre-stressing force and slightly greater anchorage lengths in SCC with a low water/cement ratio. No differences in transfer or anchorage length were detected,however, when high strength TC and SCC were compared. The ECADA test method proved to be well suited to detecting the differences between the concretes analyzed.

Keywords


concrete; bond; precast; self-compacting;prestressing

Full Text:


PDF

References


(1) Mitchell, D.; Cook, W. D.; Khan, A. A.; Tham, Th.: “Influence of high strength concrete on transfer and development length of pretensioning strand”, PCI Journal, May-Jun 1993, pp. 52-66.

(2) Cousins, Th. E.; Stallings, J. M.; Simmons, M. B.: Reduced strand spacing in pretensioned, prestressed members”, ACI Structural Journal, May-Jun 1994, pp. 277-286.

(3) Uijl, J.A den: “Transfer Length of prestressing strands in HPC”, PCI Journal, 1996, pp. 75- 90.

(4) Skarendahl, A.; Petersson, O.: Self-Compacting Concrete: Satate of the Art report of RILEM Techinical Committee 174 SCC. RILEM Publications S.A.R.L., 2000.

(5) Okamura, H.: “Self-Compacting Concrete”, Journal of Advanced Concrete Technology, vol. 1, nº 5 (2003), pp. 5-15. doi:10.3151/jact.1.5

(6) Sonebi, M.; Bartos, P. J. M.; Zhu, W.; Gibbs, J.; Tamimi; A.: “Proprerties of Hardened Concrete. Task 4 - Final Report”, Brite EuRam Proposal n.º BE96-3801, May, 2000.

(7) EFNARC: The European Guidelines for Self-Compacting Concrete. Specification, Production and Use. www.efnarc.org, May, 2005.

(8) Lorrain, M.; Daud, A.: “Bond in Self-Compacting Concrete”, Proceedings Bond in Concrete from research to standards, pp. 529-536, Budapest, november, 2002.

(9) Zhu, W.; Bartos, P. J. M.: “Micromechanical Properties of Interfacial Bond in Self-Compacting Concrete”, Proceedings Bond in Concrete From research to standards, pp. 387-394, Budapest, november, 2002.

(10) PCI: Interim Guidelines for the use of self-Consolidating Concrete in Precast/Prestressed Concrete Institute Member Plants, First Edition, Chicago, IL, 2003.

(11) Burgueño, R.; Haq, M.: “Transfer and development length of prestressing strands in precast/prestressing girders using Self-Consolidating concrete”, Proceedings SCC 2005 - Second North American Conference on the Design and Use of Self-Consolidating Concrete (SCC) and the fourth International RILEM Symposium on Self-Compacting Concrete. Chicago, September, 2005.

(12) Hegger, J.; Kommer, B.: “Pretensioning in Self-Consolidating Concrete (SCC)”, Proceedings SCC 2005 - Second North American Conference on the Design and Use of Self-Consolidating Concrete (SCC) and the fourth International RILEM Symposium on Self-Compacting Concrete. Chicago, September, 2005.

(13) ACI Comité 318: “Building Code Requeriments for reinforced Concrete (ACI 318-5)”, American Concrete Institute, Detroit, 2005.

(14) AENOR: Eurocódigo 2 Proyecto de Estructuras de Hormigón, 1998.

(15) Martí, J. R.: “Experimental study on bond of prestressing strand in high-strength concrete” PhD Thesis, UMI Dissertation Services, ISBN 0-493-55092-5, 2002. (In spanish.)

(16) Martí Vargas, J. R.; Serna-Ros, P.; Fernández-Prada, M. A.; Miguel-Sosa, P. F.; Arbeláez, C. A.: “Test method for determination of the transmission and anchorage lengths in prestressed reinforcement”, Magazine of Concrete Research, vol. 58, nº 1 (2006), febrero, pp. 21-29.

(17) AENOR: UNE 80300 IN Recomendaciones para el uso de los cementos.

(18) AENOR: UNE 36094:1997 Alambres y cordones de acero para armaduras de hormigón pretensado, Madrid, 1997.

(19) Rigueira, J. W.: “Estudio de la influencia de la granulometría de los sólidos en el diseño de hormigones autocompactables”. 5º Simposio internacional de estructuras, geotecnia y materiales de construcción Santa Clara, Cuba 19-22 November, 2002.

(20) AENOR: UNE 83313:1990: Ensayos de Hormigón. Medida de la consistencia del Hormigón fresco. Método del Cono de Abrams.

(21) AENOR: UNE-EN 12390-6:2001: Ensayos de Hormigón Endurecido. Parte 6: Resistencia a Tracción Indirecta de Probetas.

(22) Martí Vargas, J. R.; Arbeláez, C. A.; Serna-Ros, P.; Fernández-Prada, M. A.; Miguel-Sosa, P. F.: “Transfer and development lengths of concentrically prestressed concrete”, PCI journal; vol. 51, nº 5 (2006), sept-oct., pp. 74-85.




Copyright (c) 2006 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es