Materiales de Construcción, Vol 64, No 316 (2014)

3D Computational Simulation of Calcium Leaching in Cement Matrices

J. J. Gaitero
Tecnalia, Spain

J. S. Dolado
Tecnalia, Spain

C. Neuen
Fraunhofer-Institute for Algorithms and Scientific Computing SCAI, Germany

F. Heber
University of Bonn, Germany

E. A.B. Koenders
Delf University of Technology, Netherlands


Calcium leaching is a degradation process consisting in progressive dissolution of the cement paste by migration of calcium atoms to the aggressive solution. It is therefore, a complex phenomenon involving several phases and dissolution and diffusion processes simultaneously. Along this work, a new computational scheme for the simulation of the degradation process in three dimensions was developed and tested. The toolkit was used to simulate accelerated calcium leaching by a 6M ammonium nitrate solution in cement matrices. The obtained outputs were the three dimensional representation of the matrix and the physicochemical properties of individual phases as a consequence of the degradation process. This not only makes it possible to study the evolution of such properties as a function of time but also as a function of the position within the matrix. The obtained results are in good agreement with experimental values of the elastic modulus in degraded and undegraded samples.


Cement paste; Microstructure; Modelization; Durability; Transport properties

Full Text:



1. Carde, C.; Francois, R.; Torrenti, J.M. (1996) Leaching of both calcium hydroxide and C-S-H from cement paste: modeling the mechanical behaviour. Cem. Concr. Res. 26 [8], 1257–1268.

2. Nguyen, V.H.; Colina, H.; Torrenti, J.M.; Boulay, C.; Nedjar, B. (2007) Chemo-mechanical coupling behaviour of leached concrete: Part I: Experimental results. Nucl. Eng. Des. 237 [20–21], 2083–2089.

3. Barbarulo, R.; Marchand, J.; Zinder, K.A.; Prené, S. (2000) Dimensional analysis of ionic transport problems in hydrated cement systems. Part 1. Theoretical considerations. Cem. Concr. Res. 30 [12], 1955–1960.

4. Mainguy, M.; Coussy, O. (2000) Propagation fronts during calcium leaching and chloride penetration. J. Eng. Mech. 126 [3], 250–257.

5. Mainguy, M.; Tognazzi, C.; Torrenti, J.M.; Adenot, F. (2000) Modelling of leaching in pure cement paste and mortar. Cem. Concr. Res. 30 [1], 83–90.

6. Ulm, F-J.; Torrenti, J.M.; Adenot, F. (1999) Chemoporoplasticity of calcium leaching in concrete. J. Eng. Mech. 125 [10], 1200–1211.

7. Adenot, F.; Buil, M. (1992) Modeling of the corrosion of cement paste by deionized water. Cem. Concr. Res. 22 [2–3], 489–496.

8. Bentz, D.P.; Garboczi, E.J. (1992) Modelling the leaching of calcium hydroxide from cement paste: effects on pore space percolation and diffusivity. Mater. Struct. 25 [9], 523–533.

9. Gérard, B.; Le Bellego, C.; Bernard, O. (2002) Simplified modelling of calcium leaching of concrete in various environments. Mater. Struct. 35 [10], 632–640.

10. Nguyen, V.H.; Nedjar, B.; Torrenti, J.M. (2007) Chemo-mechanical coupling behaviour of leached concrete: Part II: Modelling. Nucl. Eng. Des. 237 [20–21], 2090–2097.

11. Nakarai, K.; Ishida, T.; Maekawa, K. (2006) Modeling of calcium leaching from cement hydrates coupled with micro-pore formation. J. Adv. Concr. Technol. 4 [3], 395–407.

12. Gawin, D.; Pesavento, F.; Schrefler, B.A. (2009) Modeling deterioration of cementitious materials exposed to calcium leaching in non-isothermal conditions. Comput. Method Appl. M. 198 [37–40], 3051–3083.

13. Gawin, D.; Pesavento, F.; Schrefler, B.A. (2008) Modeling of cementitious materials exposed to isothermal calcium leaching, considering process kinetics and advective water flow. Part 1: Theoretical model. Comput. Methods App. M. 45 [25–26], 6221–6240.

14. Berner, U.R. (1998) Modeling the incongruent dissolution of hydrated cement materials. Radiochim. Acta. 44–45 [2], 387–393.

15. Van Breugel, K. (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials (I) theory. Cem. Comcr. Res. 25 [2], 319–331.

16. Richardson, I.G.; Groves, G.W. (1992) Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes. Cem. Concr. Res. 22 [6], 1001–1010.

17. Cong, X.D.; Kirkpatrick, R.J. (1996) 29MAS NMR study of the structure of calcium silicate hydrate. Adv. Cem. Based Mater. 3 [3–4], 144–56.

18. Fuji, K.; Kondo, W. (1983) Estimation of thermochemical data for calcium silicate hydrate (C-S-H). J. Am. Ceram. Soc. 66 [12], 220–221.

19. Li, Y-H.; Gregory, S. (1974) Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Ac. 38 [5], 703–714.

20. Bangerth, W.; Hartmann, R.; Kanschat, G. (2007) deal. II-A general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 [4], 24/1–24/27.

21. Neuen, C. (2010) Ein multiskalenansatz zur Poisson-Nernst-Planck gleichung (A multiscale approach to the Poisson-Nernst-Planck equation). Diplomathesis. University of Bonn, Bonn (2010).

22. Gaitero, J.J.; Campillo, I.; Guerrero, A. (2008) Reduction of the calcium leaching rate of cement paste by addition of silica nanoparticles. Cem. Concr. Res. 38 [8–9], 1112–1118.

23. Constantinides, G.; Ulm, F-J. (2004) The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modelling. Cem. Concr. Res. 3 [1], 27–80.

24. Heukamp, F.H.; Ulm, F-J.; Germaine, J.T. (2001) Poroplastic properties of calcium leached cement-based materials. Cem. Concr. Res. 33 [8], 1155–1173.

25. Chen, J.J.; Thomas, J.J.; Jennings, H.M. Preparation of single-phase C-S-H specimens from hydrated tricalcium silicate pastes.

26. Mori, T.; Tanaka, K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. Mater 21 [5], 571–574.

27. Manzano, H.; Dolado, J.S.; Ayuela, A. (2009) Elastic properties of the main species present in Portland cement pastes. Acta Mater. 57 [5], 1666–1674.

28. Manzano, H.; Dolado, J.S.; Guerrero, A.; Ayuela, A. (2007) Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels. Phys. Status Solidi A. 204 [6], 1775–1780.

29. Gaitero, J.J. (2008) Multi-scale study of the fibre-matrix interface and calcium leaching in high performance concrete. Ph.D. thesis. University of the Bask Country (UPV-EHU), Bilbao (2008).

30. Project COmputationally Driven design of Innovative Cement-based materials (CODICE). CP-FP 214030-2. Final report.

31. Go-i, S.; Guerrero, A.; Puertas, F.; Hernández, M.S.; Palacios, M.; Dolado, J.S.; Zhu, W.; Howind, T. (2011) Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C3S, β-C2S and their blends. Mater. Construcc. 61 [302], 169–183.

32. Acker, P. (2001) Micromechanical analysis of creep and shrinkage mechanisms. Topical keynote lecture in "Shrinkage and durability mechanics of concrete and other quasi-brittle materials", Elsevier, (2001).

33. Mondal, P.; Shah, S.P.; Marks, L.D.; Gaitero, J.J. (2010) Comparative study of the effects of microsilica and nanosilica in concrete. Transp. Res. Rec. [2141], 6–9.

34. Gaitero, J.J.; Campillo, I.; Mondal, P.; Shah, S.P. (2010) Small changes can make a great difference. Transp. Res. Rec. [2141], 1–5.

35. Constantinides, G.; Ulm, F-J. (2007) The nanogranular nature of C-S-H. J. Mech. Phys. Solids. 55 [1], 64–90.

Copyright (c) 2014 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support