Materiales de Construcción, Vol 65, No 317 (2015)

Industrial trial to produce a low clinker, low carbon cement

L. M. Vizcaíno-Andrés
Center for the Research and Development of Structures and Materials (CIDem), Central University “Marta Abreu” of Las Villas (UCLV), Cuba

S. Sánchez-Berriel
Center for the Research and Development of Structures and Materials (CIDem), Central University “Marta Abreu” of Las Villas (UCLV), Cuba

S. Damas-Carrera
Siguaney Cement Factory, Cement Enterprise Group (GECEM), Cuba

A. Pérez-Hernández
Technical Center for the Development of Construction Materials, Ministry of Construction, Cuba

K. L. Scrivener
École Polytechnique Fédérale de Lausanne (EPFL), Cuba

J. F. Martirena-Hernández
Center for the Research and Development of Structures and Materials (CIDem), Central University “Marta Abreu” of Las Villas (UCLV), Cuba


A preliminary assessment of conditions for the industrial manufacture of a new cementitious system based on clinker-calcined clay and limestone, developed by the authors, referred as “low carbon cement” is presented. The new cement enables the substitution of more than 50% of the mass of clinker without compromising performance. The paper presents the follow-up of an industrial trial carried out in Cuba to produce 130 tonnes of the new cement at a cement plant. The new material proved to fulfill national standards in applications such as the manufacture of hollow concrete blocks and precast concrete. No major differences either in the rheological or mechanical properties were found when compared with Portland cement. Environmental assessment of the ternary cement was made, which included comparison with other blended cements produced industrially in Cuba. The new cement has proven to contribute to the reduction of above 30% of carbon emissions on cement manufacture.


Cement; Calcined clays; Energy; Emissions; Production

Full Text:



1. U.S. Geological Survey. (2002) Mineral Commodity Summaries.

2. Cembureau. (2010) Cembureau Report 2010.

3. Habert, G.; Billard, C.; Rossi, P.; Chen, C.; Roussel, N. (2010) Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 40, 820–826.

4. Purnell, P. (2013) The carbon footprint of reinforced concrete. Advances in Cement Research, 25 [1], 1–7.

5. Schneider, M.; Romer, M.; Tschudin, M.; Bolio; H. (2011) Sustainable cement production—present and future. 41 [7], 642–650.

6. Hendriks, C.A.; Worrell, E.; Martin, N.; Ozawa Meida, L.; de Jager, D.; Riemer, P. (1998) Emission reduction of greenhouse gases from the cement industry; in Fourth International Conference on Greenhouse Gas Control Technologies: Interlaken.

7. Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38, 115–127.

8. Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. (2012) Cement substitution by a combination of calcined clay and limestone. Cem. Concr. Res. 42 [12], 1579–1589.

9. Vizcaíno, L.; Antoni, M.; Alujas, A.; Scrivener, K.; Martirena, F. (2014) Calcined clays and Limestone as supplementary cementitious material for cements with low clinker content; under preparation for Mater. Construcc.

10. Fernández, L.R. (2009) Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries; in Faculté Sciences et Techniques de L'Ingeniur. PhD Thesis. Laboratory of Construction Materials. École Polytechnique Federale de Lausanne: Lausanne; 1–178.

11. Taylor, H.F.W. (1990); Cement Chemestry; Academia Press Inc; London; U.K.

12. Massazza, F. (1993) Pozzolanic cements. Cem. Concr. Comp. 15 [4], 185–214.

13. Lothenbach, B.; Scrivener, K.L.; Hooton, R.D. (2011) Supplementary cementitious materials. Cem. Concr. Res. 41, 1244–1256.

14. Fernández, R.; Martirena, F.; Scrivener, K.L. (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite; illite and montmorillonite. Cem. Concr. Res. 41 [41], 113–122.

15. Ambroise, J.; Maximilien, S.; Pera, J. (1994) Properties of Metakaolin blended cements. Advanced Cement Based Materials. 1 [4], 161–168.

16. Sabir, B.B.; Wild, S.; Bai, J. (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem. Concr. Comp. 23, 441–454.

17. De Weerdt, K.; Ben Haha, M.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. (2001) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cem. Concr. Res. 41, 279–291.

18. Moesgaard, M.; Herfort, D.; Steenberg, M.; Kirkegaard, L.F.; Yue, Y. (2011) Physical performances of blended cements containing calcium aluminosilicate glass powder and limestone. Cem. Concr. Res. 41 [3], 359–364.

19. Wild, S.; Khatib, J.; Jones, A. (1996) Relative strength; pozzolanic activity and cement hydration in superplasticized metakaolin concrete. Cem. Concr. Res. 26 [10], 1537–1544.

20. Ezziane, K.; Bougara, A.; Kadri, A.; Khelafi, H.; Kadri, E.H. (2007) Compressive strength of mortar containing natural pozzolan under various curing temperature. Cem. Concr. Comp. 29 [8], 587–593.

21. Ganesh Babou, K.; Sree Rama Kumar, V. (2000) Efficiency of GGBS in concrete. Cem. Concr. Res. 30 [7], 1031–1036.

22. Lawrence, P.; Cyr, M.; Ryngot, E. (2005) Mineral admixtures in mortars effect of type; amount and fineness of fine. Cem. Concr. Res. 35, 1092–110.

23. Murat, M.; Comel, C. (1983) Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cem. Concr. Res. 13 [5], 631–637.

24. Ambroise, J.; Murat, M.; Pera, J. (1985) Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions. Cem. Concr. Res. 15 [2], 261–268.

25. NC/CTN22; NC 96:2001 Cemento con adición activa. Especificaciones; Impreso en Cuba (2001).

26. NC/CTN22; NC 54-207:2000 Cemento - Ensayos físico-mecánicos; Printed in Cuba (2000).

27. NC/CTN22; NC 54-206:2000 Cemento - Análisis químico de arbitraje; Printed in Cuba (2000).

28. NC/CTN22; NC EN 196-6:2007 Cemento Hidráulico. Método de Ensayo. Determinación de la finura y la superficie específica; Printed in Cuba (2007).

29. NC/CTN22; NC 506:2007 Cemento hidráulico. Método de ensayo. Determinación de la resistencia mecánica; Printed in Cuba (2007).

30. NC/CTN22; NC 524:2007 Cemento hidráulico. Método de ensayo. Determinación de la consistencia normal y tiempos de fraguado por aguja Vicat; Printed in Cuba (2007).

31. Vizcaíno, L.; Antoni, M.; Martirena, F.; Scrivener, K. (2014) Effect of fineness in clinker-calcined clays-limestone cements, accepted for publication at Advances in Cement Research, 2015.

32. NC/CTN37; NC ISO 1920-2:2010 Ensayos al hormigón. Propiedades del hormigón fresco; Printed in Cuba (2010).

33. NC/CTN37; NC 167:2002 Hormigón Fresco. Toma de muestras; Impreso en Cuba (2002).

34. NC/CTN37; NC ISO 1920-3:2010. Ensayos de Hormigón – Parte 3: Elaboración y curado de Probetas de Ensayos; Printed in Cuba (2010).

35. NC/CTN37; NC 724:2009 Ensayos del Hormigón. Resistencia del Hormigón en estado endurecido; Printed in Cuba (2009).

36. NC/CTN37; NC ASTM C 1231/C 1231M:2006 Hormigón. Refrentado de probetas cilíndricas utilizando placas no adheridas; Printed in Cuba (2006).

37. NC/CTN37; NC 2047:2010 Bloques huecos de hormigón – Especificaciones; Printed in Cuba (2010).

38. Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (2006) IPCC Guidelines for National Greenhouse Gas Inventories.; in National Greenhouse Gas Inventories Programme.

39. WBCSD-CSI. (2005) The Cement CO2 and Energy Protocol-Version 3.0. 2005.

Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support