Materiales de Construcción, Vol 65, No 317 (2015)

Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O<3 and Na2O/SiO2 molar ratios

J. J. Trochez
Universidad del Valle, Colombia

R. Mejía de Gutiérrez
Universidad del Valle, Colombia

J. Rivera
Universidad del Valle, Colombia

S. A. Bernal
University of Sheffield, United Kingdom


This paper assesses the feasibility of using a spent fluid catalytic cracking catalyst (SFCC) as precursor for the production of geopolymers. The mechanical and structural characterization of alkali-activated SFCC binders formulated with different overall (activator + solid precursor) SiO2/Al2O3 and Na2O/SiO2 molar ratios are reported. Formation of an aluminosilicate ‘geopolymer’ gel is observed under all conditions of activation used, along with formation of zeolites. Increased SiO2/Al2O3 induces the formation of geopolymers with reduced mechanical strength, for all the Na2O/SiO2 ratios assessed, which is associated with excess silicate species supplied by the activator. This is least significant at increased alkalinity conditions (higher Na2O/SiO2 ratios), as larger extents of reaction of the spent catalyst are achieved. SiO2/Al2O3 and Na2O/SiO2 ratios of 2.4 and 0.25, respectively, promote the highest compressive strength (67 MPa). This study elucidates the great potential of using SFCC as precursor to produce sustainable ceramic-like materials via alkali-activation.


Spent fluid catalytic cracking catalyst; Alkali-activation; Geopolymers; Structural characterization

Full Text:



1. Zornoza-Gómez, E. (2007) El papel del catalizador usado de craqueo catalítico (fcc) como material puzolánico en el proceso de corrosión de armaduras de hormigón, in Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil. Universitat Politécnica de Valencia: Valencia- Espa-a. 328.

2. Pacewska, B.; Wilinska, I.; Kubissa, J. (1998) Use of spent catalyst from catalytic cracking in fluidized bed as a new concrete additive. Thermochim. Acta 322 [2], 175–181.

3. Payá, J.; Monzó, J.; Borrachero, M.V. (1999) Fluid catalytic cracking catalyst residue (FC3R): An excellent mineral by-product for improving early-strength development of cement mixtures. Cem. Concr. Res. 29 [11],1773–1779.

4. Letzsch, W. (2010) Global demand for catalytic technology increases. Available from:

5. Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. (2007) Geopolymer technology: The current state of the art. J. Mater. Sci. 42 [9], 2917–2933.

6. Duxson, P.; Provis, J.L. (2008) Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91 [12], 3864–3869.

7. Puertas, F.; Martínez-Ramírez, S.; Alonso, S.; Vázquez, T. (2000) Alkali-activated fly ash/slag cements: Strength behaviour and hydration products. Cem. Concr. Res. 30 [10], 1625–1632.

8. Kovalchuk, G.; Fernández-Jiménez, A.; Palomo, A. (2008) Alkali-activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Mater. Construcc. 58 [291], 35–52.

9. Mejía, J.M.; Mejía de Gutiérrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Construcc. 63 [311], 361–375.

10. Shi, C.; Day, R.L. (1993) Chemical activation of blended cements made with lime and natural pozzolans. Cem. Concr. Res. 23 [6], 1389–1396.

11. Najafi Kani, E.; Allahverdi, A.; Provis, J.L. (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34 [1], 25–33.

12. Xu, H.; van Deventer, J.S.J. (2000) The geopolymerisation of alumino-silicate minerals. Int. J. Miner. Proc. 59 [3], 247–266.

13. Feng, D.; Provis, J.L.; van Deventer, J.S.J. (2012) Thermal activation of albite for the synthesis of one-part mix geopolymers. J. Am. Ceram. Soc. 95 [5], 565–572.

14. Tashima, M.M.; Akasaki, J.L.; Castaldelli, V.N.; Soriano, L.; Monzó, J.; Payá, J.; Borrachero, M.V. (2012) New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC). Mater. Lett. 80, 50–52.

15. Rodríguez, E.D.; Bernal, S.A.; Provis, J.L.; Gehman, J.D.; Monzó, J.M.; Payá, J.; Borrachero, M.V. (2013) Geopolymer based on spent catalyst residue from a fluid catalytic cracking (FCC) process. Fuel. 109, 493–502.

16. Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Gordillo, M.; Provis, J.L. (2011) Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46 [16], 5477–5486.

17. Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surfaces A 269 [1–3], 47–58.

18. Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. (2005) Do geopolymers actually contain nanocrystalline zeolites? - A reexamination of existing results. Chem. Mater. 17 [12], 3075–3085.

19. Lloyd, R.R.; Provis, J.L.; van Deventer, J.S.J. (2009) Microscopy and microanalysis of inorganic polymer cements. 1: Remnant fly ash particles. J. Mater. Sci. 44 [2], 608–619.

20. Gualtieri, A.; Norby, P.; Artioli, G.; Hanson, J. (1997) Kinetics of formation of zeolite Na-A [LTA] from natural kaolinites. Phys. Chem. Miner. 24 [3], 191–199.

21. Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. (2011) NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 90 [6], 2118–2124.

22. Madejova, J.; Komadel, P. (2001) Baseline studies of the Clay Minerals Society source clays: Infrared methods. Clays Clay Miner. 49 [5], 410–432.

23. Miessner, H.; Kosslick, H.; Lohse, U.; Parlitz, B.; Tuan, V.A. (1993) Characterization of highly dealuminated faujasite-type zeolites: ultrastable zeolite Y and ZSM-20. J. Phys. Chem. 97, 9741–9748.

24. Farmer V.C. The Infrared Spectra of Minerals. London: Mineralogical Society, 1974.

25. Rees, C.A.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. (2007) Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23 [15], 8170–8179. PMid:17590027

26. Provis, J.L.; Duxson, P.; Lukey, G.C.; van Deventer, J.S.J. (2005) Statistical thermodynamic model for Si/Al ordering in amorphous aluminosilicates. Chem. Mater. 17 [11], 2976–2986.

27. Rees, C.A. Mechanisms and Kinetics of Gel Formation in Geopolymers, Ph.D. Thesis. University of Melbourne: Melbourne, Australia, 2007.

28. Zhang, Z.; Wang, H.; Provis, J.L.; Bullen, F.; Reid, A.; Zhu, Y. (2012) Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim. Acta 539, 23–33.

29. Hartman, J.S.; Sherriff, B.L. (1991) Silicon-29 MAS NMR of the aluminosilicate mineral kyanite: residual dipolar coupling to aluminum-27 and nonexponential spin-lattice relaxation. J. Phys. Chem. 95 [20], 7575–7579.

30. Occelli, M.L.; Voigt, U.; Eckert, H. (2004) The use of solid state nuclear magnetic resonance (NMR) to study the effect of composition on the properties of equilibrium fluid cracking catalysts (FCCs). Appl Catal. A 259, 245–251.

31. Rakiewicz, E.F.; Mueller, K.T.; Jarvie, T.P.; Sutovich, K.J.; Roberie, T.G.; Peters, A.W. (1996) Solid-state NMR studies of silanol groups in mildly and highly dealuminated faujasites. Microporous Mater. 7, 81–88.

32. Behera, B.; Ray, S.S. (2009) Structural changes of FCC catalyst from fresh to regeneration stages and associated coke in a FCC refining unit: A multinuclear solid state NMR approach. Catal. Today 141 [1], 195–204.

33. Duxson, P.; Lukey, G.C.; Separovic, F.; van Deventer, J.S.J. (2005) The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44 [4], 832–839.

34. Merwin, L.H.; Sebald, A.; Rager, H.; Schneider, H. (1991) 29Si and 27Al MAS NMR spectroscopy of mullite. Phys. Chem. Miner. 18, 47–52.

Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support