Materiales de Construcción, Vol 65, No 318 (2015)
Mineralogical, textural and physical-mechanical study of hydraulic lime mortars cured under different moisture conditions
https://doi.org/10.3989/mc.2015.03514
A. Arizzi
Universidad de Granada, Spain
G. Martinez-Huerga
Universidad de Granada, Spain
E. Sebastián-Pardo
Universidad de Granada, Spain
G. Cultrone
Universidad de Granada, Spain
Abstract
Keywords
References
1. UNE-EN 459-1 (2011) Cales para la construcción. Parte 1: Definiciones, especificaciones y criterios de conformidad. AENOR, Madrid.
2. Hartshorn, S.A.; Sharp, J.H.; Swamy, R.N. (1999) Thaumasite formation in Portland-limestone cement pastes. Cem. Concr. Res. 29, 1331–1340. http://dx.doi.org/10.1016/S0008-8846(99)00100-3
3. Veniale, F.; Setti, M.; Rodriguez-Navarro, C.; Lodola, S.; Palestra, W.; Busetto, A. (2003) Thaumasite as decay product of cement mortar in brick masonry of a church near Venice. Cem. Concr. Compos. 25, 1123–1129. http://dx.doi.org/10.1016/S0958-9465(03)00159-8
4. Henry, A.; Stewart, J. (2011) Mortars, renders and plasters. English Heritage, Practical Building Conservation. B. Martin C. Wood (eds.). Ashgate Publishing Limited, Farnham (UK), 126, 154–155, 248–252.
5. Draft BS EN 16572 (2013) Conservation of Cultural Heritage – Glossary of technical terms concerning mortars for masonry, renders and plasters used in cultural heritage. Bsi, London.
6. Boletín 023 (2005) Morteros, Guía General. AFAM, Madrid, 19.
7. UNE-EN 1015-11 (2002) Método de ensayo de los morteros de alba-ilería. Parte 11: Determinación de la resistencia a flexión y a compresión del morteros endurecido. AENOR, Madrid.
8. Arizzi A.; Molina E.; Cultrone G. (2015) Repair rendering mortars for the restoration of the Vargas Palace in Granada (Spain): a comparative study of the mortar behaviour in the laboratory and on site. R. Prikryl, A. Torok, M. Gomez-Heras, K. Miskovsky, M. Theodoridou (eds.). Sustainable Use of Traditional Geomaterials in Construction Practice. Geological Society, London, Special Publications, 416. http://dx.doi.org/10.1144/sp416.2
9. Cachim, P.; Velosa, A.L.; Rocha, F. (2010) Effect of Portuguese metakaolin on hydraulic lime concrete using different curing conditions. Constr. Build. Mater. 24, 71–78. http://dx.doi.org/10.1016/j.conbuildmat.2009.08.010
10. UNE-EN 196-1 (2000) Métodos de ensayo de cementos. Determinación de la resistencia mecánica, a una edad determinada de una muestra de cemento. AENOR, Madrid.
11. Martin, J.D. (2004) XPowder. A software package for powder X-ray diffraction analysis. Dep. Leg. M-11719.
12. Vera, J.A.; Ancochea, E.; Barnolas, A.; Bea, F.; Calvo, J.P.; Civis, J.; De Vicente, G.; Fernández Gianotti, J.; García Cortés, A.; Pérez Estaún, A.; Pujalte, V.; Rodríguez Fernández, L.R.; Sope-a, A.; Tejero, R. (2004) Geología de Espa-a. Ed. J.A. Vera, SGE–IGME, Madrid (Spain).
13. Cardell, C. (2003) Cristalización de sales en calcarenitas: aplicación al monasterio de San Jerónimo, Granada. Tesis Doctoral, Universidad de Granada. PMCid:PMC1783057
14. UNE-EN 1015-2 (1999) Métodos de ensayo de los morteros para alba-ilería. Parte 2: Toma de muestra total de morteros y preparación de los morteros para ensayo. AENOR, Madrid.
15. Cazalla, O. (2002) Morteros de cal. Aplicación en el Patrimonio Histórico. Tesis doctoral Universidad de Granada.
16. Luque, A. (2005) La cal en Andalucía y su aplicación en el Patrimonio Histórico Arquitectónico. Trabajo de Investigación Tutelada, Universidad de Granada.
17. UNE-EN 1015-3 (1999) Método de ensayo de los morteros de alba-ilería. Parte 3: Determinación de la consistencia del mortero fresco (por la mesa de sacudidas). AENOR, Madrid.
18. UNE-EN 459-2 (2011) Cales para la construcción. Parte 2: Métodos de ensayo. AENOR, Madrid.
19. Mertens, G.; Madau, P.; Durinck, D.; Blanpain, B.; Elsen, J. (2007) Quantitative mineralogical analysis of hydraulic limes by X-ray diffraction. Cem. Concr. Res. 37, 1524–1530. http://dx.doi.org/10.1016/j.cemconres.2007.08.002
20. Lawrence, R.M.H.; Mays, T.J.; Walker, P.; D'Ayala, D. (2006) Determination of carbonation profiles in non-hydraulic lime mortars using thermogravimetric analysis. Thermochim. Acta 444, 179–189. http://dx.doi.org/10.1016/j.tca.2006.03.002
21. Papayianni, I.; Stefanidou, M. (2006) Strength-porosity relacionship in lime-pozzolan mortars. Constr. Build. Mater. 20, 700–705. http://dx.doi.org/10.1016/j.conbuildmat.2005.02.012
22. Lanas, J.; Pérez, J.L.; Bello, M.A.; Álvarez, J.I. (2004) Mechanical properties of natural hydraulic lime-based mortars. Cem. Concr. Res. 34, 1291–2201. http://dx.doi.org/10.1016/j.cemconres.2004.02.005
23. Benavente, D.; Martinez-Martinez, J.; Jauregui, P.; Rodriguez, M.A.; Garcia del Cura, M.A. (2006). Assessment of the strength of building rocks using signal proccessing procedures. Constr. Build. Mater. 20. 562–568. http://dx.doi.org/10.1016/j.conbuildmat.2005.01.043
24. Arizzi, A.; Martínez-Martínez, J.; Cultrone, G.; Benavente, D. (2011) Mechanical evolution of lime mortars during the carbonation process. Key Eng. Mat. 465, 483–486. http://dx.doi.org/10.4028/www.scientific.net/KEM.465.483
25. Arizzi, A.; Martinez-Martinez, J.; Cultrone, G. (2013) Ultrasonic wave propagation through lime mortars: an alternative and non-destructive tool for textural characterization. Mater. Struct. 46 [8], 1321–1335. http://dx.doi.org/10.1617/s11527-012-9976-1
Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Contact us materconstrucc@ietcc.csic.es
Technical support soporte.tecnico.revistas@csic.es