Materiales de Construcción, Vol 65, No 319 (2015)

Guidelines for assessing the valorization of a waste into cementitious material: dredged sediment for production of self compacting concrete


https://doi.org/10.3989/mc.2015.10613

F. Rozas
Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC), Spain

A. Castillo
Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC), Spain

I. Martínez
Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC), Spain

M. Castellote
Institute of Construction Science “Eduardo Torroja” (IETcc-CSIC), Spain

Abstract


This article presents some guidelines in order to analyse the feasibility of including a waste material in the production of a structural cementitious material. First of all, the compatibility of the waste with a cementitious material has to be assured; then, if necessary, a decontamination step will be carried out; after, decision on the type of material has to be taken based on different aspects, with special emphasis on the granulometry. As a last step, mechanical, environmental and durability properties have to be evaluated. Then the procedure is illustrated with a full example, obtaining a self compacting concrete (SCC) including dredged sediment taken from a Spanish harbour.

Keywords


Protocol; Waste treatment; Cementitious material; Dredged sediment; Self-compacting concrete

Full Text:


HTML PDF XML

References


1. Zaitri, R.; Bederina, M.; Bouziani, T.; Makhloufi, Z.; Hadjoudja, M. (2014) Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the.mixture design modelling approach. Constr. Build. Mater. 60, 8–16. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.062

2. Yan, D.Y.S.; Tang, I.Y.; Lo, I.M.C. (2014) Development of controlled low-strength material derived from beneficial reuse of bottom ash and sediment for green construction. Constr. Build. Mater. 64, 201–207. http://dx.doi.org/10.1016/j.conbuildmat.2014.04.087

3. Madurwar, M.V.; Ralegaonkar, R.V.; Mandavgane, S.A. (2013) Application of agro-waste for sustainable construction materials: A review. Constr. Build. Mater. 38, 872–878. http://dx.doi.org/10.1016/j.conbuildmat.2012.09.011

4. Hassan, I.O.; Ismail, M.; Noruzman, A.H.; Yusuf, T.O.; Mehmannavaz, T.; Usman, J. (2013) Characterization of some key Industrial Waste products for sustainable Concrete production. Eds. Liu XH, Zhang KF, Li MZ. Material Design, Processing and Applications, Parts 1–4, 1091–1094. http://dx.doi.org/10.4028/www.scientific.net/amr.690-693.1091

5. de Oliveira, L.A.P.; Gomes, J.P.C.; Nepomuceno, M.C.S. (2013) The influence of wastes materials on the rheology of rendering mortars. Applied Rheology 23 [1], 11.

6. Barreca, F.; Fichera, C.R. (2013) Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy and Buildings 62, 507–513. http://dx.doi.org/10.1016/j.enbuild.2013.03.040

7. Di Palma, L.; Mancini, D.; Medici, F. (2012) Lab Scale Granulation Tests of Artificial Aggregate Production from Marine Sediments and Industrial Wastes. Bosicon 2012: 3rd International Conference on Contaminated Sites Remediation 28, 199–204. 9. Safiuddin, M.; Jumaat, M.Z.; Salam, M.A.; Islam, M.S.; Hashim, R. (2010) Utilization of solid wastes in construction materials. International Journal of the Physical Sciences 5, 1952–1963.

8. Valdes, A.J.; Martinez, C.M.; Romero, M.I.G.; Garcia, B.L.; del Pozo, J.M.M.; Vegas, A.T. (2010) Re-use of construction and demolition residues and industrial wastes for the elaboration or recycled eco-efficient concretes. Spanish Journal of Agricultural Research 8, 25–34. http://dx.doi.org/10.5424/sjar/2010081-1140

9. Safiuddin, M.; Jumaat, M.Z.; Salam, M.A.; Islam, M.S.; Hashim, R. (2010) Utilization of solid wastes in construction materials. International Journal of the Physical Sciences 5, 1952–1963.

10. Zdiri, M.; Abriak, N.E.; Ben Ouezdou, M.; Neji, J. (2009) The use of fluvial and marine sediments in the formulation of Roller Compacted Concrete for use in pavements. Environmental Technology 30, 809–815. http://dx.doi.org/10.1080/09593330902990097 PMid:19705664

11. Knoeri, C.; Nikolic, I.; Althaus, H.J.; Binder, C.R. (2014) Enhancing Recycling of Construction Materials: an Agent Based Model with Empirically Based Decision Parameters. Jasss-the Journal of Artificial Societies and Social Simulation 17.

12. Felekoglu, B. (2007) Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resources Conservation and Recycling 51, 770–791. http://dx.doi.org/10.1016/j.resconrec.2006.12.004

13. Bignozzi, M.C.; Sandrolini, F. (2006) Tyre rubber waste recycling in self-compacting concrete. Cem. Concr. Res. 36, 735–739. http://dx.doi.org/10.1016/j.cemconres.2005.12.011

14. Ho, D.W.S.; Sheinn, A.M.M.; Ng, C.C.; Tam, C.T. (2002) The use of quarry dust for SCC applications. Cem. Concr. Res. 32, 505–511. http://dx.doi.org/10.1016/S0008-8846(01)00726-8

15. Sua-Iam, G.; Makul, N. (2013) Use of increasing amounts of bagasse ash waste to produce self-compacting concrete by adding limestone powder waste. Journal of Cleaner Production 57, 308–319. http://dx.doi.org/10.1016/j.jclepro.2013.06.009

16. Pereira-de Oliveira, L.A.; Nepomuceno, M.; Rangel, M. (2013) An eco-friendly self-compacting concrete with recycled coarse aggregates. Informes de la Construccion 65, 31–41. http://dx.doi.org/10.3989/ic.11.138

18. Krishnasami, R.; Malathy, R. (2013) Significance of blast furnace slag as coarse aggregate in self compacting concrete. Eds. Hou H, Tian L. Architecture, Building Materials and Engineering Management, Pts 1–4, 829–833. http://dx.doi.org/10.4028/www.scientific.net/amm.357-360.829

19. Azeredo, G.; Diniz, M. (2013) Self-compacting concrete obtained by the use of kaolin wastes. Constr.Build. Mater. 38, 515–523. http://dx.doi.org/10.1016/j.conbuildmat.2012.08.027

20. Gesoglu, M.; Guneyisi, E.; Kocabag, M.E.; Bayram, V.; Mermerdas, K. (2012) Fresh and hardened characteristics of self compacting concretes made with combined use of marble powder, limestone filler, and fly ash. Constr.Build. Mater. 37, 160–170. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.092

21. Valdez, P.; Barragan, B.; Girbes, I.; Shuttleworth, N.; Cockburn, A. (2011) Use of waste from the marble industry as filler for the production of self-compacting concretes. Mater. Construcc. 61, 61–76.

22. Topçu, I. B.; Bilir, T.; Uygunoglu, T. (2009) Effect of waste marble dust content as filler on properties of self-compacting concrete. Constr. Build. Mater. 23, 1947–1953. http://dx.doi.org/10.1016/j.conbuildmat.2008.09.007

23. Kou, S.C.; Poon, C.S. (2009) Properties of self-compacting concrete prepared with recycled glass aggregate. Cem. Concr. Comp. 31, 107–113. http://dx.doi.org/10.1016/j.cemconcomp.2008.12.002

24. Nystroem, G.M.; Pedersen, A.J.; Ottosen, L.M.; Villumsen, A. (2006) The use of desorbing agents in electrodialytic remediation of harbour sediment. Science of the Total Environment 357, 25–37. http://dx.doi.org/10.1016/j.scitotenv.2005.04.040 PMid:15936059

25. Castellote, M.; Andrade, C.; Alonso, C. (2000) Electrochemical removal of chlorides - Modelling of the extraction, resulting profiles and determination of the efficient time of treatment. Cem. Concr. Res. 30 [4], 615–621. http://dx.doi.org/10.1016/S0008-8846(00)00220-9

26. Rozas, F.; Castellote, M. (2012) Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochimica Acta 86, 102–109. http://dx.doi.org/10.1016/j.electacta.2012.03.068

27. Mulligan, C.N.; Yong, R.N.; Gibbs, B.F. (2001) Surfactant-enhanced remediation of contaminated soil: a review. Engineering Geology 60, 371–380. http://dx.doi.org/10.1016/S0013-7952(00)00117-4

28. Castellote, M.; Ordó-ez, M.; Andrade, C.; Zuloaga, P.; Navarro, M. (2011) Electrochemical treatment to condition contaminated EAFD as addition to immobilisation mortar in low level waste concrete containers. Corrosion Engineering Science and Technology 46 [2], 190–194. http://dx.doi.org/10.1179/1743278210Y.0000000005

29. Montero, N.; Belzunce-Segarra, M.J.; Gonzalez, J.L.; Menchaca, I.; Garmendia, J.M.; Etxebarria, N.; Nieto, O.; Franco, J. (2013) Application of Toxicity Identification Evaluation (TIE) procedures for the characterization and management of dredged harbor sediments. Marine Pollution Bulletin 71, 259–268. http://dx.doi.org/10.1016/j.marpolbul.2013.01.038 PMid:23465571

30. Castellote, M.; Andrade, C.; Alonso, C. (2001) Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber-Comparison with natural diffusion tests. Cem. Concr. Res. 31 [10], 1411–1420. http://dx.doi.org/10.1016/S0008-8846(01)00562-2

31. Spanish recommendations for the management of dredged material in the Spanish harbours. (1994) Centro de Estudios y Experimentación de Obras Públicas, Puertos del Estado, Madrid.

32. Casado-Martinez, M.C.; Buceta, J.L.; Belzunce, M.J.; Delvalls, T.A. (2006) Using sediment quality guidelines for dredged material management in commercial ports from Spain. Environment International 32, 388–396. http://dx.doi.org/10.1016/j.envint.2005.09.003 PMid:16289759

33. Casado-Martinez, M.C.; Buceta, J.L.; Forja, J.M.; DelValls, T.A. (2006) Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. I. Exercise description and sediment quality. Ciencias Marinas 32, 121–128.

34. Casado-Martinez, M.C.; Forja, J.M.; DelValls, T.A. (2009) A multivariate assessment of sediment contamination in dredged materials from Spanish ports. Journal of Hazardous Materials 163, 1353–1359. http://dx.doi.org/10.1016/j.jhazmat.2008.07.106 PMid:18790564

35. UNE EN 12350-2:2006. Testing fresh concrete. Part 2: Slump test.

36. UNE EN 12350-8:2011. Testing fresh concrete - Part 8: Self-compacting concrete - Slump-flow test.

37. UNE EN 12350-6:2009. Testing fresh concrete - Part 6: Density.

38. UNE EN 12350-7:2001. Testing fresh concrete - Part 7: Air content - Pressure methods.

39. UNE-EN 12390-3. Testing hardened concrete - Part 3: Compressive strength of test specimens.

40. EN 12457-2:2002 Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction).

41. UNE ENV 12506 Characterization of waste. Analysis of eluates. Determination of pH, As, Cd, Cr (VI), Cu, Ni, Pb, Zn, Cl−, NO2−, SO42−.

42. ENV 13370:2001. Characterization of waste. Determination of Ammonium-N, AOX, conductivity, Hg, phenol index, TOC, CN− easily liberatable and F−.

43. UNE 89987:2009 Concrete durability. Test methods. Measurement of chloride diffusion coefficient in hardened concrete. Multiregime method.

44. UNE 83982:2008. Concrete durability. Test methods. Determination of the capillar suction in hardened concrete. Fagerlund method.

45. Spanish Code on Structural Concrete EHE-08.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es