A combined study of expansive and tensile strength evolution of mortars under sulfate attack: implications on durability assessment

Authors

  • P. Akpinar Near East University, Lefkosa-TRNC
  • I. Casanova Universitat Politècnica de Catalunya, Barcelona

DOI:

https://doi.org/10.3989/mc.2010.47908

Keywords:

Sulfate attack, sulfate resistant cements, expansion, tensile properties, accelerated tests

Abstract


In this paper, we present a combined study of the length-change and tensile strength evolution of highand low-C3A Portland cements. This approach has proven useful to provide an assessment on the performance under severe and moderate sulfate attack. While higher expansion rates are observed in high-C3A samples, tensile strength evolution of both cement types is essentially identical. The simultaneous increase of expansion rate and decrease in tensile strength is strongly suggestive that both processes are related. This is attributed to the formation and development of microcracks that favor the ingress of the sulfate solution in the specimens. These results provide further insights into the commonly accepted idea that standard (accelerated) tests aiming to evaluate the expansion behavior do not provide reliable information on the expected performance (sulfate resistance) and damage potential of Portland cements.

Downloads

Download data is not yet available.

References

(1) Mehta, P. K.: “Mechanism of sulfate attack on portland cement concrete-another look”, Cem. Concr. Res., vol. 13 (1983), pp. 401-406. doi:10.1016/0008-8846(83)90040-6

(2) Neville, A.: “The confused world of sulfate attack on concrete”, Cem. Concr. Res., vol. 34 (2004), pp. 1275-1296. doi:10.1016/j.cemconres.2004.04.004

(3) Cohen, M. D.: “Mather B. Sulfate attack on concrete-research needs”, ACI Mater. J., vol. 88 (1991), pp. 62-69.

(4) Boyd, A. J.; Mindess, S.: “The use of tension testing to investigate the effect of W/C ratio and cement type on the resistance of concrete to sulfate attack”, Cem. Concr. Res., vol. 34 (2004), pp. 373-377. doi:10.1016/j.cemconres.2003.08.010

(5) ASTM C1012.: “Standard test method for length change of hydraulic-cement mortars exposed to a sulfate solution”, Annual Book of ASTM Standards, vol. 04.01 (1995), American Society of Testing and Materials, Philadelphia, PA, USA.

(6) Casanova, I.; Agulló, L.; Aguado A.: “Aggregate expansivity due to sulfide oxidation - I. Reaction system and rate model”, Cem. Concr. Res., vol. 26 (1996), pp. 993-998. doi:10.1016/0008-8846(96)00085-3

(7) Cao, H. T.; Bucea L.; Ray, A.; Yozghatlian, S.: “The effect of cement composition and pH of environment on sulfate resistance of portland cements and blended cements”, Cem. Concr. Comp., vol. 19 (1997), pp. 161-171. doi:10.1016/S0958-9465(97)00011-5

(8) Santhanam, M.; Cohen, M. D.; Olek, J.: “Sulfate attack research-whither now? ”, Cem. Concr. Res., vol. 31 (2001), pp. 889-897. doi:10.1016/S0008-8846(01)00510-5

(9) Taylor, H. F. W.: Cement Chemistry. Thomas Telford Publishing, London (1990).

(10) Irassar, E. F.; González, M.; Rahhal, V.: “Sulphate resistance of type V cements with limestone filler and natural pozzolana”, Cem. Concr. Comp., vol. 22 (2000), pp. 361-368. doi:10.1016/S0958-9465(00)00019-6

(11) Minard, H.; Garrault, S.; Regnauda, L.; Nonat, A.: “Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum”, Cem. Concr. Res., vol. 37 (2007), pp. 1418-1426. doi:10.1016/j.cemconres.2007.06.001

(12) Al-Amoudi, O. S. B.: “Attack on plain and blended cements exposed to aggressive sulfate environments”, Cem. Concr. Comp., vol. 24 (2002), pp. 305-316. doi:10.1016/S0958-9465(01)00082-8

(13) Planel, D.; Sercombe, J.; Le Bescop, P.; Adenot, F.; Torrenti, J.-M.: “Long-term performance of cement paste during combined calcium leaching–sulfate attack: kinetics and size effect”, Cem. Concr. Res., vol. 36 (2006), pp. 137-143. doi:10.1016/j.cemconres.2004.07.039

(14) Bellmann, F.; Möser, B.; Stark, J.: “Influence of sulfate solution concentration on the formation of gypsum in sulfate resistance test specimen”, Cem. Concr. Res., vol. 36 (2006), pp. 358-363. doi:10.1016/j.cemconres.2005.04.006

(15) Irassar, E. F.: “Sulfate resistance of blended cement: Prediction and relation with flexural strength”, Cem. Concr. Res., vol. 20 (1990), pp. 209-218. doi:10.1016/0008-8846(90)90073-7

(16) Ferraris, C. F.; Stutzman, P. E.; Snyder, K. A.: “Sulfate Resistance of Concrete: A New Approach”, R&D Serial No. 2486, Portland Cement Association, Skokie, Illinois (2006).

(17) Mehta, P. K.: “Sulfate Attack on Concrete - A Critical Review”, Mat. Sci. Concr., vol. 3 (1993), pp. 105-130.

(18) Monteiro, P. J. M.; Kurtis, K. E.: “Time to failure for concrete exposed to severe sulfate attack”, Cem. Concr. Res., vol. 33 (2003), pp. 987-993. doi:10.1016/S0008-8846(02)01097-9

Downloads

Published

2010-03-30

How to Cite

Akpinar, P., & Casanova, I. (2010). A combined study of expansive and tensile strength evolution of mortars under sulfate attack: implications on durability assessment. Materiales De Construcción, 60(297), 59–68. https://doi.org/10.3989/mc.2010.47908

Issue

Section

Research Articles