Materiales de Construcción, Vol 65, No 319 (2015)

Physical-chemical characteristics of an eco-friendly binder using ternary mixture of industrial wastes


https://doi.org/10.3989/mc.2015.07414

Hoang-Anh Nguyen
National Taiwan University of Science and Technology (NTUST) (Taiwan Tech), Taiwan, Province of China

Ta-Peng Chang
National Taiwan University of Science and Technology (NTUST) (Taiwan Tech), Taiwan, Province of China

Chun-Tao Chen
National Taiwan University of Science and Technology (NTUST) (Taiwan Tech), Taiwan, Province of China

Tzong-Ruey Yang
National Taiwan University of Science and Technology (NTUST) (Taiwan Tech), Taiwan, Province of China

Tien-Dung Nguyen
National Taiwan University of Science and Technology (NTUST) (Taiwan Tech), Taiwan, Province of China

Abstract


This study explores the physical-chemical characteristics of paste and mortar with an eco-friendly binder named as SFC cement, produced by a ternary mixture of industrial waste materials of ground granulated blast furnace slag (S), Class F fly ash (FFA), and circulating fluidized bed combustion fly ash (CFA). To trigger the hydration, the CFA, which acted as an alkaline-sulfate activator, was added to the blended mixture of slag and FFA. The water to binder ratio (W/B), curing regime, and FFA addition significantly affected the engineering performances and shrinkage/expansion of the SFC pastes and mortars. The SFC mortars had higher workability than that of ordinary Portland cement (OPC). With similar workability, the SFC mortars had compressive strengths and expansions comparable to OPC mortars. The main hydration products of the hardened SFC cement were ettringite (AFt) and C-S-H/C-A-S-H. The transformation of the AFt to the monosulfates was observed as the hydration time increased.

Keywords


Fly ash; Blast furnace slag; Cement paste; Mortar; Hydration products

Full Text:


HTML PDF XML

References


1. Anthony, E.J. (1995). Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Prog Energ Combust. 21 [3], 239–268. http://dx.doi.org/10.1016/0360-1285(95)00005-3

2. Anthony, E.J.; Granatstein, D.L. (2001). Sulfation phenomena in fluidized bed combustion systems. Prog Energ Combust. 27 [2], 215–236. http://dx.doi.org/10.1016/S0360-1285(00)00021-6

3. Sheng, G.; Li, Q.; Zhai, J. (2012). Investigation on the hydration of CFBC fly ash. Fuel, 98, 61–66. http://dx.doi.org/10.1016/j.fuel.2012.02.008

4. Fernández-Jiménez, A.; Puertas, F. (1997). Influence of the activator concentration on the kinetics of the alkaline activation process of a blastfurnace slag. Mater. Construcc, 47 [246], 31–42. http://dx.doi.org/10.3989/mc.1997.v47.i246.505

5. Ortega, J.; Sánchez, I.; Climent, M. (2013). Influence of different curing conditions on the pore structure and the early age properties of mortars with fly ash and blast-furnace slag. Mater. Construcc, 63 [310], 219–234.

6. Sanjuán, M.; Pi-eiro, A.; Rodríguez, O. (2011). Ground granulated blast furnace slag efficiency coefficient (k value) in concrete. Applications and limits. Mater. Construcc, 61 [302], 303–313. http://dx.doi.org/10.3989/mc.2011.60410

7. Rodríguez, E.; Bernal, S.; Mejía de Gutiérrez, R.; Puertas, F. (2008). Alternative concrete based on alkali-activated slag. Mater. Construcc. 58 [291], 53–67.

8. Fernández-Jiménez, A.; Puertas, F. (2001). Alkaline activated slag cements. Determination of reaction degree. Mater. Construcc, 51 [261], 53–66. http://dx.doi.org/10.3989/mc.2001.v51.i261.380

9. García Medina, L.; Orrantia Borunda, E.; Aquilar Elguézabal, A. (2006). Use of copper slag in the manufacture of Portland cement. Mater. Construcc, 56 [281], 31–40. http://dx.doi.org/10.3989/mc.2006.v56.i281.90. http://dx.doi.org/10.3989/mc.2006.v56.i281.90

10. Bijen, J. (1996). Benefits of slag and fly ash. Construc. Build. Mat. 10 [5], 309–314. http://dx.doi.org/10.1016/0950-0618(95)00014-3

11. Chi, M.; Huang, R. (2013). Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construc. Build. Mat 40, 291–298. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.003

12. Duran Atis¸, C. (2005). Strength properties of high-volume fly ash roller compacted and workable concrete, and influence of curing condition. Cem. Concr. Res, 35 [6], 1112–1121. http://dx.doi.org/10.1016/j.cemconres.2004.07.037

13. Nath, S.K.; Kumar, S. (2013). Influence of iron making slags on strength and microstructure of fly ash geopolymer. Construc. Build. Mat 38, 924–930. http://dx.doi.org/10.1016/j.conbuildmat.2012.09.070

14. Rattanasak, U.; Pankhet, K.; Chindaprasirt, P. (2011). Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int J Miner Metall Mater, 18 [3], 364–369. http://dx.doi.org/10.1007/s12613-011-0448-3

15. Shariq, M.; Prasad, J.; Masood, A. (2013). Studies in ultrasonic pulse velocity of concrete containing GGBFS. Construc. Build. Mat 40 [0], 944–950. http://dx.doi.org/10.1016/j.conbuildmat.2012.11.070

16. Bijen, J.; Niël, E. (1981). Supersulphated cement from blastfurnace slag and chemical gypsum available in the Netherlands and neighbouring countries. Cem. Concr. Res, 11 [3], 307–322. http://dx.doi.org/10.1016/0008-8846(81)90104-6

17. Dutta, D.K.; Borthakur, P.C. (1990). Activation of low lime high alumina granulated blast furnace slag by anhydrite. Cem. Concr. Res, 20 [5], 711–722. http://dx.doi.org/10.1016/0008-8846(90)90005-I

18. Gruskovnjak, A.; Lothenbach, B.; Winnefeld, F.; Figi, R.; Ko, S.C.; Adler, M.; Mäder, U. (2008). Hydration mechanisms of super sulphated slag cement. Cem. Concr. Res, 38 [7], 983–992. http://dx.doi.org/10.1016/j.cemconres.2008.03.004

19. Ma, W.; Liu, C.; Brown, P.W.; Komarneni, S. (1995). Pore structures of fly ashes activated by Ca(OH)2 and CaSO4·2H2O. Cem. Concr. Res, 25 [2], 417–425. http://dx.doi.org/10.1016/0008-8846(95)00027-5

20. Midgley, H.G.; Pettifer, K. (1971). The micro structure of hydrated super sulphated cement. Cem. Concr. Res, 1 [1], 101–104. http://dx.doi.org/10.1016/0008-8846(71)90086-X

21. Shi, C. (1998). Pozzolanic Reaction and Microstructure of Chemical Activated Lime-Fly Ash Pastes. ACI Materials Journal, 95 [5], 537–545.

22. Singh, M.; Garg, M. (2002). Calcium sulfate hemihydrate activated low heat sulfate resistant cement. Construc. Build. Mat 16 [3], 181–186. http://dx.doi.org/10.1016/S0950-0618(01)00026-5

23. Sivapullaiah, P.; Moghal, A. (2011). Role of Gypsum in the Strength Development of Fly Ashes with Lime. J Mater Civil Eng. 23 [2], 197–206. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000158

24. Rust, D.; Rathbone,R.; Mahboub, K.C.; Robl, T. (2012). Formulating Low-Energy Cement Products. J Mater Civil Eng. 24 [9], 1125–1131. http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0000456

25. Salain, I.M.A.K.; Clastres, P.; Bursi, J.M.; Pellissier, C. (2001). Circulating Fluidized Bed Combustion Ashes as an Activator of Ground Vitrified Blast Furnace Slag. Special Publication, 202, 225–244.

26. Zhao, F.-Q.; Ni, W.; Wang, H.-J.; Liu, H.-J. (2007). Activated fly ash/slag blended cement. Resour Conserv Recy. 52 [2], 303–313. http://dx.doi.org/10.1016/j.resconrec.2007.04.002

27. Zhong, S.; Ni, K.; Li, J. (2012). Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder. Waste Manage 32 [7], 1468–1472. http://dx.doi.org/10.1016/j.wasman.2012.02.014 PMid:22440404

28. Singh, M.; Garg, M. (2007). Durability of cementing binders based on fly ash and other wastes. Construc. Build. Mat 21 [11], 2012–2016. http://dx.doi.org/10.1016/j.conbuildmat.2006.05.032

29. ASTMC150-12. Standard Specification for Portland Cement. ASTM Book of Standards.

30. Sheng, G.; Zhai, J.; Li, Q.; Li, F. (2007). Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement. Fuel, 86 [16], 2625–2631. http://dx.doi.org/10.1016/j.fuel.2007.02.018

31. Wang, B.; Song, Y. (2013). Methods for the control of volume stability of sulfur-rich CFBC ash cementitious systems. Mag Concrete Res. 65 [19], 1168–1172. http://dx.doi.org/10.1680/macr.13.00070

32. ASTMC1437-13. Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM Book of Standards.

33. ASTMC109-13. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM Book of Standards.

34. ASTMC596-09. Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement. ASTM Book of Standards.

35. Aimin, X.; Sarkar, S.L. (1991). Microstructural study of gypsum activated fly ash hydration in cement paste. Cem. Concr. Res 21 [6], 1137–1147. http://dx.doi.org/10.1016/0008-8846(91)90074-R

36. Andersen, M.D.; Jakobsen, H.J.; Skibsted, J. (2004). Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cem. Concr. Res, 34 [5], 857–868. http://dx.doi.org/10.1016/j.cemconres.2003.10.009

37. Pardal, X.; Pochard, I.; Nonat, A. (2009). Experimental study of Si-Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions. Cem. Concr. Res, 39 [8], 637–643. http://dx.doi.org/10.1016/j.cemconres.2009.05.001

38. Thomas, J.J.; Rothstein, D.; Jennings, H.M.; Christensen, B.J. (2003). Effect of hydration temperature on the solubility behavior of Ca-, S-, Al-, and Si-bearing solid phases in Portland cement pastes. Cem. Concr. Res, 33 [12], 2037–2047. http://dx.doi.org/10.1016/S0008-8846(03)00224-2

39. Mehta, P.K. (1983). Mechanism of sulfate attack on portland cement concrete-Another look. Cem. Concr. Res. 13 [3], 401–406. http://dx.doi.org/10.1016/0008-8846(83)90040-6

40. Donatello, S.; Fernández-Jimenez, A.; Palomo, A. (2013). Very High Volume Fly Ash Cements. Early Age Hydration Study Using Na2SO4 as an Activator. J. Am. Ceram. Soc. 96 [3], 900–906. http://dx.doi.org/10.1111/jace.12178




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es