Materiales de Construcción, Vol 65, No 320 (2015)

Behaviour of FRP confined concrete in square columns


https://doi.org/10.3989/mc.2015.05414

A. de Diego
Eduardo Torroja Institute for Construction Science, CSIC, Spain

A. Arteaga
Eduardo Torroja Institute for Construction Science, CSIC, Spain

J. Fernández
Technical University of Madrid, Spain

R. Perera
Technical University of Madrid, Spain

D. Cisneros
Eduardo Torroja Institute for Construction Science, CSIC, Spain

Abstract


A significant amount of research has been conducted on FRP-confined circular columns, but much less is known about rectangular/square columns in which the effectiveness of confinement is much reduced. This paper presents the results of experimental investigations on low strength square concrete columns confined with FRP. Axial compression tests were performed on ten intermediate size columns. The tests results indicate that FRP composites can significantly improve the bearing capacity and ductility of square section reinforced concrete columns with rounded corners. The strength enhancement ratio is greater the lower the concrete strength and also increases with the stiffness of the jacket.
The confined concrete behaviour was predicted according to the more accepted theoretical models and compared with experimental results. There are two key parameters which critically influence the fitting of the models: the strain efficiency factor and the effect of confinement in non-circular sections.

Keywords


Concrete; Composite; FRP; Confinement; Compressive strength

Full Text:


HTML PDF XML

References


1. Bakis, C.; Bank, L.; Brown, V.; Cosenza, E.; Davalos, J.; Lesko, J.; Machida, A.; Rizkalla, S.; Triantafillou, T. (2002) Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. J. Compos. Constr. 6 [2], 73–87. http://dx.doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73)

2. Perera, R.; Sevillano, E.; Arteaga, A.; de Diego, A. (2014) Identification of intermediate debonding damage in FRP-plated RC beams based on multi-objective particle swarm optimization without updated baseline model. Compos. Part B: Eng. 62, 205–217. http://dx.doi.org/10.1016/j.compositesb.2014.02.008

3. Panjehpour, M.; Ali, A.A.A.; Voo, Y.L.; Aznieta, F.N. (2014) Modification of strut effectiveness factor for reinforced concrete deep beams strengthened with CFRP laminates. Mater. Construcc. 64 [314], e016.

4. Alzate, A.; Arteaga, A.; de Diego, A.; Cisneros, D.; Perera, R. (2013) Shear strengthening of reinforced concrete members with CFRP sheets. Mater. Construcc. 63 [310], 251–265.

5. fib Bulletin 14, Externally bonded FRP reinforcement for RC structures. The International Federation for Structural Concrete, Lausanne, Switzerland, (2001).

6. CNR-DT200/2004, Guide for the design and construction of externally bonded FRP systems for strengthening existing structures, Advisory Committee on Technical Recommendations for Construction, National Research Council, Rome, Italy, (2004).

7. ACI 440.2R-08, Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures, American Concrete Institute Farmington Hills, Michigan, USA, (2008).

8. Concrete Society. Design guidance for strengthening concrete structures with fibre composite materials, 3rd ed., Concrete Society Technical Report No. 55, Crowthorne, Berkshire (UK), (2012).

9. Samaan, M.; Mirmiran, A.; Shahawy, M. (1998), Model of Concrete Confined by Fiber Composites. J. Struct. Eng. 124 [9], 1025–1031. http://dx.doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)

10. Toutanji, H.A. (1999) Stress-Strain Characteristics of Concrete Columns externally Confined with Advanced Fiber Composite Sheets. ACI Mat. J. 96 [3], 397–404.

11. Lam, L; Teng, J. G. (2003) Design-oriented Stress-Strain Model for FRP-confined Concrete. Constr. Build. Mat. 17, 471–486.

12. Spoelstra, M. R.; Monti, G. (1999) FRP-Confined Concrete Model. J. of Compos. Constr. 3 [3], 143–150. http://dx.doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143)

13. Mirmiran, A.; Shahawy, M. (1997) Behavior of Concrete Columns Confined by Fiber Composites. J. Struct. Eng. 123 [5], 583–590. http://dx.doi.org/10.1061/(ASCE)0733-9445(1997)123:5(583)

14. Teng, J.G.; Huang, Y.L.; Lam, L.; Ye, L.P. (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J. Compos. Constr. 11 [2], 201–210. http://dx.doi.org/10.1061/(ASCE)1090-0268(2007)11:2(201)

15. Hu, H.; Seracino, R. (2014) Analytical Model for FRP-and-Steel-Confined Circular Concrete Columns in Compression. J. Compos. Constr. 18, Special Issue: 10th Anniversary of IIFC, A4013012. http://dx.doi.org/10.1061/(asce)cc.1943-5614.0000394

16. Aire, G.; Gettu, R.; Casas, J.R.; Marques, S.; Marques, D. (2010) Concrete laterally confined with fibre-reinforced polymers (FRP): experimental study and theoretical model. Mater. Construcc. 60 [297], 19–31. http://dx.doi.org/10.3989/mc.2010.45608

17. De Lorenzis, L.; Tepfers, R. (2003) Comparative Study of Models on Confinement of Concrete Cylinders with Fiber-Reinforced Polymer Composites. J. Compos. Constr. 7 [3], 219–237. http://dx.doi.org/10.1061/(ASCE)1090-0268(2003)7:3(219)

18. Chaallal, O.; Hassan, M.; Leblanc, M. (2006) Circular Columns Confined with FRP: Experimental versus Predictions of Models and Guidelines. J. Compos. Constr. 10 [1], 4–12. http://dx.doi.org/10.1061/(ASCE)1090-0268(2006)10:1(4)

19. Lim, J.C.; Ozbakkaloglu, T. (2014), Lateral Strain-to-Axial Strain Relationship of Confined Concrete, J. Struct. Eng., 10.1061/(ASCE)ST.1943-541X.0001094, 04014141.

20. Chaallal, O.; Shahawy, M.; Hassan, M. (2003) Performance of Axially Loaded Short Rectangular Columns Strengthened with Carbon Fiber-Reinforced Polymer Wrapping. J. Compos. Constr. 7 [3], 200–208. http://dx.doi.org/10.1061/(ASCE)1090-0268(2003)7:3(200)

21. Rochette, P.; Labossière, P. (2000) Axial Testing of Rectangular Column Models Confined with Composites. J. Compos. Constr. 4 [3] 129–136. http://dx.doi.org/10.1061/(ASCE)1090-0268(2000)4:3(129)

22. Pham, T.M.; Doan, L.V.; Hadi, N.S. (2013) Strengthening square reinforced concrete columns by circularisation and FRP confinement. Constr. Build. Mat. 49, 490–499.

23. Lam, L.; Teng, J.G. (2003) Design-Oriented Stress-Strain Model for FRP-Confined Concrete in Rectangular Columns. J. Reinf. Plast. Compos. 22 [13], 1149–1186. http://dx.doi.org/10.1177/0731684403035429

24. EN ISO 527-4:1997 Plastics. Determination of tensile properties. Test conditions for isotropic and orthotropic fibre-reinforced plastic composites.

25. Pessiki, S.; Harries, K.A.; Kestner, J.; Sause, R.; Ricles, J.M. (2001) The axial behaviour of concrete confined with fiber reinforced composite jackets. J. Compos. Constr. 5 [4], 237–245. http://dx.doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237)

26. Chen, J.F.; Li, S.Q.; Bisby, L.A.; Ai, J. (2011) FRP rupture strains in the split-disk test. Compos. B Eng. 42 [4], 962–972. http://dx.doi.org/10.1016/j.compositesb.2010.12.015

27. Mander, J.B.; Priestley, M.J.N.; Park, R. (1988) Theoretical Stress-Strain Model for Confined Concrete. J. Struct. Eng. 114 [8], 1804–1826. http://dx.doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

28. Matthys, S.; Toutanji, H.; Audenaert, K.; Taerwe, L. (2005) Axial Load Behavior of Large-Scale Columns Confined with Fiber-Reinforced Polymer Composites. ACI Struct. J. 102 [2], 258–267.

29. Mirmiran, A.; Shahawy, M.; Samaan, M.; El Echary, H.; Mastrapa, J.C.; Pico, O. (1998) Effect of Column Parameters on FRP-Confined Concrete. J. Compos. Constr. 2 [4], 175–185. http://dx.doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)

30. Karam, G.; Tabbara, M. (2004) Corner Effects in CFRP-Wrapped Square Columns. Mag. Conc. Res. 56 [8], 461–464. http://dx.doi.org/10.1680/macr.2004.56.8.461




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es