Materiales de Construcción, Vol 65, No 320 (2015)

Ranking procedure based on mechanical, durability and thermal behavior of mortars with incorporation of phase change materials


https://doi.org/10.3989/mc.2015.07314

S. Cunha
Territory, Environment and Construction Centre (C-TAC), University of Minho, Portugal

J. Aguiar
Territory, Environment and Construction Centre (C-TAC), University of Minho, Portugal

A. Tadeu
University of Coimbra, Portugal

Abstract


Nowadays, considering the high variety of construction products, adequate material selection, based on their properties and function, becomes increasingly important. In this research, a ranking procedure developed by Czarnecki and Lukowski is applied in mortars with incorporation of phase change materials (PCM). The ranking procedure transforms experimental results of properties into one numerical value. The products can be classified according to their individual properties or even an optimized combination of different properties. The main purpose of this study was the ranking of mortars with incorporation of different contents of PCM based in different binders. Aerial lime, hydraulic lime, gypsum and cement were the binders studied. For each binder, three different mortars were developed. Reference mortars, mortars with incorporation of 40% of PCM and mortars with incorporation of 40% of PCM and 1% of fibers, were tested. Results show that the incorporation of PCM in mortars changes their global performance.

Keywords


Mortar; Workability; Mechanical Properties; Durability; Thermal Analysis

Full Text:


HTML PDF XML

References


1. Lucas, S.; Ferreira, V. M.; Aguiar, J. (2013) Latent heat storage in PCM containing mortars - Study of microstructural modifications. Energy Build. 66, 724–731. http://dx.doi.org/10.1016/j.enbuild.2013.07.060

2. Sá, A.; Azenha, M.; Sousa, H.; Samagaio, A. (2012) Thermal enhancement of plastering mortars with Phase Change Materials: Experimental and numerical approach. Energy Build. 49, 16–27. http://dx.doi.org/10.1016/j.enbuild.2012.02.031

3. Kheradmand, M.; Azenha, M.; Aguiar, J.; Krakowiak, K. (2014) Thermal behavior of cement based plastering mortar containing hybrid microencapsulated phase change materials. Energy Build. 84, 526–536. http://dx.doi.org/10.1016/j.enbuild.2014.08.010

4. Cunha, S.; Aguiar, J.; Ferreira, V.; Tadeu, A. (2014) Influence of the type of phase change materials microcapsules on the properties of lime-gypsum thermal mortars. Advanced Engineering Materials. 16, 433–441. http://dx.doi.org/10.1002/adem.201300278

5. Zhang, Y.; Zhou, G.; Lin, K.; Zhang, K.; Di, H. (2007) Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Build. Environ. 42, 2197–2209. http://dx.doi.org/10.1016/j.buildenv.2006.07.023

6. Zalba, B.; Marín, J.; Cabeza, L.; Mehling, H. (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251–283. http://dx.doi.org/10.1016/s1359-4311(02)00192-8

7. Cabeza, L.; Castell, A.; Barreneche, C.; Gracia, A.; Fernández, A. (2011) Materials used as PCM in thermal energy storage in buildings: A review. Renewable and Sustainable Energy Reviews. 15, 1675–1695. http://dx.doi.org/10.1016/j.rser.2010.11.018

8. Tyagi, V.; Kaushik, S.; Tyagi, S.; Akiyama, T. (2011) Development of phase change materials based microencapsulated technology for buildings: A review. Renewable and Sustainable Energy Reviews. 15, 1373–1391. http://dx.doi.org/10.1016/j.rser.2010.10.006

9. Fang, G.; Tang, F.; Cao, L. (2014) Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials. Renewable and Sustainable Energy Reviews. 40, 237–259. http://dx.doi.org/10.1016/j.rser.2014.07.179

10. Cunha, S.; Aguiar, J.; Ferreira, V.; Tadeu, A.; Garbacz, A. (2014) Physical and mechanical properties of mortars with incorporation of phase change materials. In Luso-Brazilian Conference on Sustainable Construction Materials. 5–7 de Março, Guimarães, Portugal.

11. Cunha, S.; Aguiar, J.; Ferreira, V.; Tadeu, A.; Garbacz, A. (2014) Durability of mortars with incorporation of phase change materials, In Luso-Brazilian Conference on Sustainable Construction Materials. 5–7 de Março, Guimarães, Portugal.

12. Athienitis, A.; Liu, C.; Hawes, D.; Banu, D.; Feldman, D. (1997) Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage. Build. Environ. 32, 405–410.

13. Shilei, L.; Neng, Z.; Guohui, F. (2006) Impact of Phase Change Wall Room on Indoor Thermal Environment in winter. Energy Build. 38, 18–24. http://dx.doi.org/10.1016/j.enbuild.2005.02.007

14. Darkwa, K.; O'Callaghan, P.; Tetlow, D. (2006) Phase-change drywalls in a passive-solar building. Appl. Energy. 83, 425–435.

15. Schossig, P.; Henning, H.; Gschwander, S.; Haussmann, T. (2005) Micro-encapsulated Phase Change Materials Integrated In to Construction Materials. Solar Energy Materials & Solar Cells. 89, 297–306. http://dx.doi.org/10.1016/j.solmat.2005.01.017

16. Ahmad, M.; Bontemps, A.; Sallée, H.; Quenard, D. (2006) Thermal Testing and Numerical Simulation of a Prototype Cell Using Light Wallboards Coupling Vacuum Isolation Panels and Phase Change Material. Energy Build. 38, 673–681. http://dx.doi.org/10.1016/j.enbuild.2005.11.002

17. Czarnecki, L.; Lukowski, P. (1999) An Usability Approach to Technical Evaluation of the Polymer Coatings for Concrete Substrate. 2nd International RILEM Symposium on Adhesion between Polymers and Concrete. Germany. 173–180.

18. Aguiar, J.; Moreira, P.; Lukowski, P.; Czarnecki, L.; Camões, A.; Gemert, D. (2007) Contribution to a ranking procedure for polymeric coatings and hydrophobic agents for concrete. Restoration of Buildings and Monuments. 13, 251–264.

19. Cunha, S.; Alves, V.; Aguiar, J.; Ferreira, V. (2012) Use of phase change materials microcapsules in aerial lime and gypsum mortars. Cem. Wapno Beton. Special Issue, 17–21.

20. Cunha, S.; Kheradmand, M.; Aguiar, J.; Bragança, L.; Ferreira, V. (2013) Thermal mortars with incorporation of PCM microcapsules. Restoration of Buildings and Monuments. 19, 171–177. http://dx.doi.org/10.1515/rbm-2013-6592

21. Cunha, S.; Aguiar, J.; Ferreira, V.; Tadeu, A. (2013) Influence of Adding Encapsulated Phase Change Materials in Aerial Lime based Mortars. Advanced Materials Research. 687, 255–261. http://dx.doi.org/10.4028/www.scientific.net/AMR.687.255

22. European Committee for Standardization (CEN). (1999) EN 1015-11:1999. Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar.

23. European Committee for Standardization (CEN). (2000) EN 1015-12:2000. Methods of test for mortar for masonry - Part 12: Determination of adhesive strength of hardened rendering and plastering mortars on substrates.

24. European Committee for Standardization (CEN). (2002) EN 1015-18:2002. Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar.

25. Laboratório Nacional de Engenharia Civil (LNEC). (1993) Especificação E 394, Betões – Determinação da absorção de água por imersão.

26. European Committee for Standardization (CEN). (2006) CEN/TS 12390-9:2006. Testing hardened concrete - Part 9: Freeze-thaw resistance.

27. Kheradmand, M.; Aguiar, J.; Azenha, M. (2014) Assessment of the thermal performance of plastering mortars within controlled test cells. In Luso-Brazilian Conference on Sustainable Construction Materials. 5–7 de Março, Guimarães, Portugal.

28. Li, J.; Xue, P.; He, H.; Ding, W.; Han, J. (2009) Preparation and application effects of a novel form-stable phase change material as the thermal storage layer of an electric floor heating system. Energy Build. 41, 871–880. http://dx.doi.org/10.1016/j.enbuild.2009.03.009

29. Hernández, V.; Morillón, D.; Best, R.; Fernández, J.; Almanza, R.; Chargoy, N. (2006) Experimental and numerical model of wall like solar heat discharge passive system. Appl. Therm. Eng. 26, 2464–2469.

30. Portuguese Institute for Quality (IPQ). (2013). NP EN 998-1:2013. Specification for masonry mortars - Part 1: Plastering mortars for interior and exterior (in Portuguese).




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es