Materiales de Construcción, Vol 65, No 320 (2015)

Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures


https://doi.org/10.3989/mc.2015.00715

Ming-Xiang Xiong
Department of Civil Engineering, National University of Singapore, Singapore

J. Y. Richard Liew
Department of Civil Engineering, National University of Singapore, Singapore

Abstract


Experimental results of spalling and residual mechanical properties of ultra-high performance concrete after exposure to high temperatures are presented in this paper. The compressive strength of the ultra-high performance concrete ranged from 160 MPa~185 MPa. This study aimed to discover the effective way to prevent spalling for the ultra-high performance concrete and gauge its mechanical properties after it was subjected to fire. The effects of fiber type, fiber dosage, heating rate and curing condition were investigated. Test results showed that the compressive strength and elastic modulus of the ultra-high performance concrete declined slower than those of normal strength concrete after elevated temperatures. Polypropylene fiber rather than steel fiber was found effective to prevent spalling but affected workability. The effective fiber type and dosage were recommended to prevent spalling and ensure sufficient workability for casting and pumping of the ultra-high performance concrete.

Keywords


High Performance Concrete; Temperature; Fiber Reinforcement; Polymer; Mechanical Properties

Full Text:


HTML PDF XML

References


1. EN 1992-1-1. (2004) Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization.

2. EN 1992-1-2. (2004) Eurocode 2: Design of concrete structures - Part 1-2: General rules-structural fire design, European Committee for Standardization.

3. EN 1994-1-1. (2004) Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization.

4. EN 1994-1-2. (2005) Eurocode 4: Design of composite steel and concrete structures - Part 1-2: General rules - Structural fire design, European Committee for Standardization.

5. Ali, F.A.; Connor, D.O.; Tair, A.A. (2001) Explosive spalling of high-strength concrete columns in fire. Mag. Concr. Res. 53 [3], 197–204. http://dx.doi.org/10.1680/macr.2001.53.3.197

6. Ko, J.; Ryu, D.; Noguchi, T. (2011) The spalling mechanism of high-strength concrete under fire. Mag. Concr. Res. 63 [5], 357–370. http://dx.doi.org/10.1680/macr.10.00002

7. Chen, B.; Liu, J.Y. (2004) Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem. Concr. Res. 34 [6], 1065–1069. http://dx.doi.org/10.1016/j.cemconres.2003.11.010. http://dx.doi.org/10.1016/j.cemconres.2003.11.010

8. Han, C.C.; Hwang, Y.S.; Yang, S.H.; Gowripalan, N. (2005) Performance of spalling resistance of high performance concrete with polypropylene fiber contents and lateral confinement. Cem. Concr. Res. 35 [9], 1747–1753. http://dx.doi.org/10.1016/j.cemconres.2004.11.013

9. Zeiml, M.; Leithner, D.; Lackner, R.; Mang, H.A. (2006) How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cem. Concr. Res. 36 [5], 929–942. http://dx.doi.org/10.1016/j.cemconres.2005.12.018

10. Hadi, M.N.S. (2007) Using fibres to enhance the properties of concrete columns. Constr. Build. Mater. 21 [1], 118–125. http://dx.doi.org/10.1016/j.conbuildmat.2005.06.028

11. RILEM Technical Committee. (2007) Recommendation of RILEM TC 200-HTC: mechanical concrete properties at high temperatures – modeling and applications, Part 2: stress-strain relation. Mater. Struct. 40 [9], 855–864. http://dx.doi.org/10.1617/s11527-007-9286-1

12. Morita, T.; Saito, H.; Kumagai, H. (1992) Residual mechanical properties of high strength concrete members exposed to high temperature - Part 1: Test on material properties. Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, Niigata.

13. Felicetti, R.; Gambarova, P.G.; Rosati, G.P.; Corsi, F.; Giannuzzi, G. (1996) Residual mechanical properties of high strength concretes subjected to high temperature cycles. Proceedings of 4 th International Symposium on Utilization of High Strength/High Performance Concrete, Paris France, 579–588.

14. Liew, J.Y.R.; Xiong, D.X. (2012) Ultra-high strength concrete filled composite columns for multi-storey building construction. Adv. Struct. Eng. 15 [9], 1487–1503. http://dx.doi.org/10.1260/1369-4332.15.9.1487. http://dx.doi.org/10.1260/1369-4332.15.9.1487

15. Xiong, D.X. (2012) Structural behaviour of concrete filled steel tubes with high strength materials. PhD thesis, National University of Singapore.

16. Dias, W.P.S.; Khoury, G.A.; Sullivan, P.J.E. (1990) Mechanical properties of hardened cement paste exposed to temperatures up to 700 °C. ACI Mater. J. 87 [2], 160–166. http://dx.doi.org/10.14359/1981. http://dx.doi.org/10.14359/1981

17. Khoury, G.A. (1992) Compressive strength of concrete at high temperature: a reassessment. Mag. Concr. Res. 44 [161], 291–309. http://dx.doi.org/10.1680/macr.1992.44.161.291. http://dx.doi.org/10.1680/macr.1992.44.161.291

18. Tanyildizi, H.; Coskun, A. (2008) The effect of high temperature on compressive strength and splitting tensile strength of structural lightweight concrete containing fly ash. Constr. Build. Mater. 22 [11], 2269–2275. http://dx.doi.org/10.1016/j.conbuildmat.2007.07.033

19. Castillo, C.; Durrani, A.J. (1990) Effect of transient high temperature on high strength concrete. ACI Mater. J. 87 [1], 47–53.

20. Behnood, A.; Ziari, H. (2008) Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem. Concr. Compos. 30 [2], 106–112. http://dx.doi.org/10.1016/j.cemconcomp.2007.06.003

21. ASTM C 469-02 (2002). Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression. ASTM International, United States.

22. Naus, D.J. (2006) The effect of elevated temperature on concrete material and structures - a literature review. Oak Ridge National Laboratory, U.S. Nuclear Regulatory Commision, Office of Nuclear Regulatory Research, Washington DC.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es