Materiales de Construcción, Vol 65, No 320 (2015)

Acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates


https://doi.org/10.3989/mc.2015.01115

J. Carbajo
Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Spain

T. V. Esquerdo-Lloret
Instituto de Diseño para la Fabricación y Producción Automatizada, Universitat Politècnica de Valencia, Spain

J. Ramis
Department of Physics, Systems Engineering and Signal Theory, University of Alicante, Spain

A. V. Nadal-Gisbert
Instituto de Tecnología de Materiales, Universitat Politècnica de Valencia, Spain

F. D. Denia
Centro de Investigación en Ingeniería Mecánica, Universitat Politècnica de Valencia, Spain

Abstract


The use of sustainable materials is becoming a common practice for noise abatement in building and civil engineering industries. In this context, many applications have been found for porous concrete made from lightweight aggregates. This work investigates the acoustic properties of porous concrete made from arlite and vermiculite lightweight aggregates. These natural resources can still be regarded as sustainable since they can be recycled and do not generate environmentally hazardous waste. The experimental basis used consists of different type specimens whose acoustic performance is assessed in an impedance tube. Additionally, a simple theoretical model for granular porous media, based on parameters measurable with basic experimental procedures, is adopted to predict the acoustic properties of the prepared mixes. The theoretical predictions compare well with the absorption measurements. Preliminary results show the good absorption capability of these materials, making them a promising alternative to traditional porous concrete solutions.

Keywords


Acoustic impedance; Absorption coefficient; Porous concrete; Lightweight aggregates

Full Text:


HTML PDF XML

References


1. Branco, F.G.; Godinho, L. (2013) On the use of lightweight mortars for the minimization of impact sound transmission. Constr. Build. Mater. 45, 184–191.

2. Tutikian, B.F.; Nunes, M.F.O.; Leal, L.C.; Marquetto, L. (2013) Hormigón ligero con agregado reciclado de EVA para atenuación del ruido de impacto. Mater. Construcc. 63 [310], 309–316. http://dx.doi.org/10.3989/mc.2012.06911

3. Krezel, Z.A.; McManus, A.M.K. (2000) Recycled aggregate concrete sound barriers for urban freeways. Waste Management Series. 1, 884–892. http://dx.doi.org/10.1016/S0713-2743(00)80097-5

4. Kim, H.K.; Lee, H.K. (2010) Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Appl. Acoust. 71, 607–615. http://dx.doi.org/10.1016/j.apacoust.2010.02.001

5. Olek, J.; Weiss, W.J.; Neithalath, N. (2004) Concrete mixtures that incorporate inclusion to reduce the sound generated in Portland cement concrete pavements. Final report SQDH 2004-2. The Institute for Safe, Quite and Durable Highways. Purdue University Center for Advanced Cement-Based Materials Northwestern University.

6. Neithalath, N. (2004) Developement and characterization of acoustically efficient cementitious materials, Ph. D. Tesis, Purdue University.

7. Tiwari, V.; Shukla, A.; Bose, A. (2004) Acoustic properties of cenosphere reinforced cement and asphalt concrete. Appl. Acoust. 65, 263–275. http://dx.doi.org/10.1016/j.apacoust.2003.09.002

8. Losa, M.; Leandri, P.; Bacci, R. (2008) Mechanical and performance-related properties of asphalt mixes containing expanded clay aggregate. Transp. Res. Record. 23–30. http://dx.doi.org/10.3141/2051-04

9. Freitas, E.; Mendonça, C.; Santos, J.A.; Murteira, C.; Ferreira, J.P. (2012) Traffic noise abatement: How different pavements, vehicle speeds and traffic densities affect annoyance levels. Transp. Res. Part D 17, 321–326. http://dx.doi.org/10.1016/j.trd.2012.02.001

10. EEA: "Noise in Europe 2014". Publications office of the European Union (2014). ISBN 978-92-9213-505-8.

11. Pacheco-Torgal, F. (2014) Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 51, 151–162.

12. Pacheco-Torgal, F.; Jalali, S. (2011) Cementitious building materials reinforced with vegetable fibres: A review. Constr. Build. Mater. 25 [2], 575–581. http://dx.doi.org/10.1016/j.conbuildmat.2010.07.024

13. Glé, P.; Gourdon, E.; Arnaud, L. (2012) Modelling of the acoustical properties of hemp particles. Constr. Build. Mater. 37, 801–811.

14. Radonjanin, V.; Malešev, M.; Marinkovic´, S.; Al Malty, A.E.S. (2013) Green recycled aggregate concrete. Constr. Build. Mater. 47, 1503–1511.

15. Chen, S.H.; Wang, H.Y.; Jhou, J.W. (2013) Investigating the properties of lightweight concrete containing high contents of recycled green building materials. Constr. Build. Mater. 48, 98–103.

16. Holmes, N.; Browne, A.; Montague, C. (2014) Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement. Constr. Build. Mater. 73, 195–204.

17. D'Alessandro, F.; Asdrubali, F.; Baldinelli, G. (2014) Multi-parametric characterization of a sustainable lightweight concrete containing polymers derived from electric wires. Constr. Build. Mater. 68, 277–284.

18. Asdrubali, F.; Schiavoni, S.; Horoshenkov, K.V. (2012) A review of sustainable materials for acoustic applications. Building Acoustics. 19 [4], 283–312. http://dx.doi.org/10.1260/1351-010X.19.4.283

19. IMA Europe. Industrial Materials. "Vermiculite", web site: http://www.ima-europe.eu/sites/ima-europe.eu/files/minerals/Vermiculite_WEB-2011.pdf.

20. Melo, M.O.B.C.; Bueno, L.; Coutinho, A.S.; Sousa, V.; Perazzo, N. (2012) Energy efficiency in building installations using thermal insulating materials in northeast Brazil. Energ. Buildings. 47, 35–43. http://dx.doi.org/10.1016/j.enbuild.2011.11.021

21. Hossain, K.M.A.; Ahmed, S.; Lachemi, M. (2011) Lightweight concrete incorporating pumice based blended cement and aggregate: Mechanical and durability characteristics. Constr. Build. Mater. 25, 1186–1195. http://dx.doi.org/10.1016/j.conbuildmat.2010.09.036

22. Schackow, A.; Effting, C.; Folgueras, M.V.; Gu.ths, S.; Mendes, G.A. (2014) Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent. Constr. Build. Mater. 57, 190–197. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.009. http://dx.doi.org/10.1016/j.conbuildmat.2014.02.009

23. Palomar, I.; Barluenga, G.; Puentes, J. (2015) Lime–cement mortars for coating with improved thermal and acoustic performance. Constr. Build. Mater. 75, 206–314.

24. Attenborough, K. (1983) Acoustical characteristics of rigid fibrous absorbents and granular materials. J. Acoust. Soc. Am. 73 [3].

25. Miki, Y. (1990) Acoustical properties of porous materials – Generalizations of empirical models. J. Acoust. Soc. Jpn, 11 [1], 25–28. http://dx.doi.org/10.1250/ast.11.25

26. Stinson, M.R.; Champoux, Y. (1992) Propagation of sound and the assignment of shape factors in model porous materials having simple pore geometries. J. Acoust. Soc. Am. 91 [2], 265–295. http://dx.doi.org/10.1121/1.402530

27. Allard, J.F. (1992) New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91 [6], 3346–3353. http://dx.doi.org/10.1121/1.402824

28. Attenborough, K.; Bashir, I.; Taherzadeh, S. (2011) Outdoor ground impedance models. J. Acoust. Soc. Am. 129 [5], 2806–2819. http://dx.doi.org/10.1121/1.3569740

29. Swift, M.J.; Bris, P.; Horoshenkov, K.V. (1999) Acoustic absorption in re-cycled rubber Granulate. Appl. Acoust. 57, 203–212. http://dx.doi.org/10.1016/S0003-682X(98)00061-9

30. Horoshenkov, K.V.; Swift, M.J. (2001) The acoustic properties of granular materials with pore size distribution close to log-normal. J. Acoust. Soc. Am. 110 [5], 2371–2378. http://dx.doi.org/10.1121/1.1408312

31. Horoshenkov, K.V.; Hughes, D.C.; Cwirzen, A. (2003) The sound speed and attenuation in loose and consolidated granular formulations of high alumina cements. Appl. Acoust. 64, 197–212. http://dx.doi.org/10.1016/S0003-682X(02)00069-5

32. Vasina, M.; Hughes, D.D.; Horoshenkov, K.V.; Lapcik Jr, L. (2006) The acoustical properties of consolidated expanded clay granulates. Appl. Acoust. 647, 787–796. http://dx.doi.org/10.1016/j.apacoust.2005.08.003

33. AENOR: UNE-EN 933-2:1996. Ensayo para determinar las propiedades geométricas de los áridos. Parte 2: Determinación de la granulometría de las partículas. Tamices de ensayo, tama-o nominal de las aberturas, Madrid (1996), ICS 91.100.15-30.

34. AENOR: UNE-EN 196-1:2005. Métodos de ensayo de cementos. Parte 1: Determinación de resistencias mecánicas, Madrid (2005), ICS 91.100.10.

35. Brown, R.J.S. (1980) Connection between formation factor of electrical resistivity and fluid-solid coupling factor in Biot's equation for acoustic waves in fluid-filled porous media. Geophys. 45, 1269–1275. http://dx.doi.org/10.1190/1.1441123

36. ISO 9053:1991. Acoustics - Materials for acoustical applications - Determination of airflow resistance, (1991), ICS 91.100.60.

37. Ingard, K.U.; Dear, T.A. (1985) Measurement of acoustic flow resistances. J. Sound Vib. 103 [4], 567–572. http://dx.doi.org/10.1016/S0022-460X(85)80024-9

38. Leclaire, P.; Swift, M.J.; Horoshenkov, K.V. (1998) Determining the specific area of porous acoustic materials from water extraction data. Appl. Phys. 84 [12], 6886–6890. http://dx.doi.org/10.1063/1.368985

39. AENOR: UNE-EN ISO 10534-2:2002. Acústica. Determinación del coeficiente de absorción acústica y de la impedancia acústica en tubos de impedancia. Parte 2: Método de la función de transferencia, Madrid (2002), ICS 17.140.01.

40. Geslain, A.; Groby, J.P.; Dazel, O.; Mahasaranon, S.; Horoshenkov, K.V.; Khan, A. (2012) An application of the Peano series expansion to predict sound propagation in materials with continuous pore stratification. J. Acoust. Soc. Am. 132 [1], 208–215. http://dx.doi.org/10.1121/1.4728188

41. Ramis, J.; del Rey, R.; Alba, J.; Godinho, L.; Carbajo, J. (2014) A model for acoustic absorbent materials derived from coconut fiber. Mater. Construcc. 64 [313].

42. Nelder, J.A.; Mead, R. (1965) A simpex method for function minimization. Comput. J. 7, 308–313.




Copyright (c) 2015 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es