Materiales de Construcción, Vol 66, No 321 (2016)

Natural pozzolan-and granulated blast furnace slag-based binary geopolymers


https://doi.org/10.3989/mc.2016.03615

R. A. Robayo
Universidad del Valle, Colombia

R. Mejía de Gutiérrez
Universidad del Valle, Colombia

M. Gordillo
Universidad Autónoma de Occidente, Colombia

Abstract


This study describes the synthesis at ambient temperature (25±3 °C) of binary geopolymer systems based on natural volcanic pozzolan and granulated blast furnace slag. Na2SiO3 and NaOH were used as alkaline activators. The effects of the SiO2/Al2O3, Na2O/Al2O3 ratio and the amount of slag added (from 0 to 30%) on the reaction kinetics, compressive strength and microstructure of the final product were studied. To characterise the geopolymer pastes, techniques such as X-ray diffraction (XRD), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used. The results indicate the possibility of obtaining a geopolymer cement with a compressive strength of up to 48.11 MPa after 28 days of curing at ambient temperature whose characteristics are comparable to those of commercial portland cement.

Keywords


Alkaline-activated cement; Volcanic Pozzolan; Blast furnace slag; Compressive Strength; Characterization

Full Text:


HTML PDF XML

References


1. Pacheco-Torgal, F.; Castro-Gomez, J.; Jalali, S. (2008) Alkaliactivated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 22. 1305–1314. http://dx.doi.org/10.1016/j.conbuildmat.2007.10.015

2. Komnitsas, K.; Zaharaki, D. (2007) Geopolymerisation: A review and prospects for the minerals industry. Mater. Eng. 20, 1261–1277. http://dx.doi.org/10.1016/j.mineng.2007.07.011

3. Majidi, B. (2009) Geopolymer technology, from fundamentals to advanced applications: a review Mater. Tech. 24 [2], 79–87. http://dx.doi.org/10.1179/175355509x449355

4. Davidovits, J. (2013) Geopolymer Cement. A review. Geopolymer Institute, Technical papers 21, 1-11.

5. Provis, L.; Lukey, G.; Van Deventer, J. (2005) Reviews: Do geopolymers actually contain nanocrystalline zeolites? A re-examination of existing results. Chem. Mater. 17, 3075–3085. http://dx.doi.org/10.1021/cm050230i

6. Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernandez-Jimenez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], 1–24. http://dx.doi.org/10.3989/mc.2014.00314

7. Lizcano, A.; Herrera, M.; Santamarina, J. (2006) Suelos derivados de cenizas volcánicas en Colombia. Rev. Int. de desastres naturales, accidentes e infraestructura civil 6 [2], 167–197.

8. Lemougna, P.; Melo, U.F.; Delplancke, M.P.; Rahier H. (2014) Influence of the chemical and mineralogical composition on the reactivity of volcanic ashes during alkali activation. Ceram. Inter. 40, 811–820. http://dx.doi.org/10.1016/j.ceramint.2013.06.072

9. Tchakoute, H.K.; Elimbi, A.; Yanne, E.; Djangang, C.N. (2013) Utilization of volcanic ashes for the production of Geopolymers cured at ambient temperature. Cem. Concr. Compos. 38, 75–81. http://dx.doi.org/10.1016/j.cemconcomp.2013.03.010

10. Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. (2011) Effect of heat treatment on reactivity-strength of alkali-activated natural pozzolans. Constr. Build. Mater. 25, 4065–4071. http://dx.doi.org/10.1016/j.conbuildmat.2011.04.044

11. Kani, E.N.; Allahverdi, A. (2009a) Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceramics-Silikaty 53 [3], 195–204.

12. Kani, E.N.; Allahverdi, A. (2009b) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J. Mater. Sci. 44, 3088–3097. http://dx.doi.org/10.1007/s10853-009-3411-1

13. Allahverdi, A.; Kani, N.; Yazdanipour, M. (2011) Effects of blast-furnace slag on natural pozzolan-based geopolymer cement. Ceramics-Silikáty 55 [1], 68–78.

14. Djobo, J.N.Y.; Tchadjié, L.N.; Tchakoute, H.K.; Kenne, B.B.D., Elimbi, A.; Njopwouo, D. (2014) Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin. Journal of Asian Ceramic Societies 2 [4], 387–398. http://dx.doi.org/10.1016/j.jascer.2014.08.003

15. Rodríguez, E.; Bernal, S.; Mejía de Gutiérrez, R.; Puertas, F. (2008) Hormigón alternativo basado en escorias activadas alcalinamente. Mater. Construcc. 58 [291], 53–57. http://dx.doi.org/10.3989/mc.2008.v58.i291.104

16. Li, Ch.; Sun, H.; Li, L. (2010) A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cem. Concr. Res. 40, 1341–1349. http://dx.doi.org/10.1016/j.cemconres.2010.03.020

17. Bernal, S.A.; Mejía de Gutierrez, R.; Pedraza, A., Provis, J.L.; Rodriguez, E.D.; Delvasto, S. (2011) Effect of binder content on the performance of alkali-activated slag concretes. Cem. Concr. Res. 41, 1–8. http://dx.doi.org/10.1016/j.cemconres.2010.08.017

18. Allahverdi, A.; Saffari M. (2011) Imparting cementing properties to natural pozzolan with a solid compound chemical activator. 4th International Conference Non-Traditional Cement & Concrete, 565–572.

19. Kani, N.; Allahverdi, A.; Provis, J.L. (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34, 25–33. http://dx.doi.org/10.1016/j.cemconcomp.2011.07.007

20. Tironi, A.; Trezza, M.; Irassar, E.; Scian, A. (2012) Activación térmica de bentonitas para su utilización como puzolanas. Revista de la Construcción 11 [1], 44–53. http://dx.doi.org/10.4067/S0718-915X2012000100005

21. Davidovits, J. (2011) Application of Ca-based geopolymer with blast furnace slag, a review. 2nd International Slag Valorisation Symposium, 33–49.

22. Zhang, Z.; Wang, H.; Zhu, Y.; Reid, A.; Provis, J.; Bullen, F. (2014) Using fly ash to partially substitute metakaolin in geopolymer synthesis. App. Clay Sci. 88–89, 194–201. http://dx.doi.org/10.1016/j.clay.2013.12.025

23. Allahverdi, A.; Mehrpour, K.; Kani, E.N. (2008) Investigating the possibility of utilizing pumice-type natural pozzolan in production of Geopolymer cement. Ceramics-Silikaty 52 [1], 16–23.

24. Xu, H.; Gong, W.; Syltebo, L.; Lutze, W.; Pegg, I.L. (2014) DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution. J. Hazardous Mater. 278, 34–39. http://dx.doi.org/10.1016/j.jhazmat.2014.05.070 PMid:24952220

25. Fernández - Jiménez, A.; Puertas, F. (1997) Influence of the activator concentration on the kinetics of the alkaline activation process of a blast furnace slag. Mater. Construcc. 47 [246], 31–42.

26. Snellings, R.; Mertens, G.; Elsen, J. (2010) Calorimetric evolution of the early pozzolanic reaction of natural zeolites. J. Therm. Anal. Calorim. 101, 97–105. http://dx.doi.org/10.1007/s10973-009-0449-x

27. Rahhal, V.; Talero, R. (2010) Fast physics-chemical and calorimetric characterization of natural pozzolans and other aspects. J. Therm. Anal. Calorim. 99, 479–486. http://dx.doi.org/10.1007/s10973-009-0016-5

28. Lemougna, P.; MacKenzie, J.D.; Melo, U.F. (2011) Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Inter. 37, 3011–3018. http://dx.doi.org/10.1016/j.ceramint.2011.05.002

29. Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterization. Cem. Concr. Res. 57, 95–104. http://dx.doi.org/10.1016/j.cemconres.2013.12.005

30. Tchakoute, H.K.; Elimbi, A.; Mbey, J.A.; Ngally, C.J.; Njopwouo, D. (2012) The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 35, 960–969. http://dx.doi.org/10.1016/j.conbuildmat.2012.04.023




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es