Materiales de Construcción, Vol 66, No 322 (2016)

Fundamental properties of industrial hybrid cement: utilization in ready-mixed concretes and shrinkage-reducing applications

P. Martauz
Cement plant - Považská cementáreň, a.s., Slovakia

I. Janotka
Building Testing and Research Institute, Slovakia

J. Strigáč
Cement plant - Považská cementáreň, a.s., Slovakia

M. Bačuvčík
Building Testing and Research Institute, Slovakia


Utility properties of novel hybrid cement (H-Cement) are influenced by pozzolanic reaction of fly ash, latent hydraulic reaction of metallurgical slag together with the alkali activation of inorganic geopolymer based on precipitated waste water coming from bauxite residues. Content of Portland cement clinker is at maximum of 20 mass %, the remaining portion consists of inorganic geopolymer. Up to 80% of CO2 emissions are saved by H-Cement manufacture compared to ordinary Portland cement (OPC). No heat treatment or autoclaving is needed at H-Cement production. The field application of H-Cement is performed by the same way than that of common cements listed in EN 197-1, and is also connected with highly efficient recovery and safe disposal of red mud waste. H-Cement is suitable for ready-mixed concretes up to C30/37 strength class and is specified by beneficial shrinkage-reducing property of the concrete kept in long dry-air cure opposite to common cements.


Hybrid cement; Alkaline waste waters; Ready-mixed concretes; Shrinkage-reducing cement

Full Text:



1. The European Cement Association (CEMBUREAU) (2014) Activity report 2013. D/2014/5457, Brussels, Belgium.

2. Gartner, E. (2004) Industrially interesting approaches to "low-CO2" cements. Cem. Concr. Res. 34 [9], 1489–1498.

3. Schneider, M. (2011) CO2-Minderung Weltweite Anforderungen. Proceed. Technisch Wissenschaftliche- Zementtagung. 1-27. (Düsseldorf, Germany).

4. Ádám J. (2011) The Kolontár Report. Causes and lessons from the red mud disaster, Benedek János Printing Cypress Ltd. Publisher Greens, Hungary.

5. Sahu, R.C.; Patel R.; Ray, B.C. (2010) Neutralization of red mud using CO2 sequestration cycle. J. Hazard. Mater. 179 [1–3], 28–34. PMid:20346587

6. Strigácˇ, J.; Martauz, P. (2012) Combined binder on the base of wastes. Patent application SK PP 50024-2012.

7. Palomo, A.; Krivenko, P.; García-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jimenénez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315] Article number e022.

8. García-Lodeiro, I.; Maltseva, O.; Palomo, A.; Fernández-Jiménez, A. (2012) Hybrid alkaline cements. Part I: Fundamentals. Roman J. Mater. 42 [4], 330–335. WOS: 000313318800002.

9. Palomo, A.; Maltseva, O.; García-Lodeiro, I.; Fernández- Jiménez, A. (2013) Hybrid alkaline cements. Part II: The clinker factor. Roman J. Mater. 43 [1], 74–80. WOS: 000316506900011.

10. Fernández-Jiménez, A.; García-Lodeiro, I.; Donatello, S.; Maltseva, O.; Palomo, A. (2014) Specific examples of hybrid alkaline cements. Proceed. MATEC Web of Conferences, 11 [01001], 1–3.

11. Fernández-Jimenénez, A.; Sobrados, I.; Sanz, I.; Palomo, A. (2011) Hybrid cements with very low OPC content. Proceed. 13th international congress on the chemistry of cement. Book of Abstracts, Area 3, Session 13, 141. (Madrid, Spain).

12. Bernal, S.A.; Herfort, D.; and Skibsted, J. (2011) Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin. Proceed. 13th international congress on the chemistry of cement. Book of Abstracts, Area 3, Session 13, 142. (Madrid, Spain).

13. Zibouche, F.; Fernández-Jimenénez, A.; Boudissa, N.; Abadlia, M.T.; Palomo, A. (2011) Alkaline activation of metakaolin-slag-clinker blends. Proceed. 13th international congress on the chemistry of cement, Book of Abstracts, Area 3, Session 13, 143. 1–7. (Madrid, Spain).

14. Abdollahnejad, Z.; Torgal, P.; Barroso Aguiar, J. (2014) Compressive strength and microstructure of hybrid alkaline cements. Int. J. Civ. Arch. Struct. Constr. Eng. 8 [2], 221–227.

15. Davidovits, J. (2005) Geopolymer chemistry and sustainable development. The poly(sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry. Proceed. 4th world congress Geopolymer, 9–16. (Saint-Quentin, France).

16. Donatello, S.; Maltseva, O.; Fernández-Jimenez, A.; Palomo, A. (2014) The early age hydration. Reactions of a hybrid cement containing a very high content of coal bottom ash. J. Am. Ceram. Soc. 97 [3], 929–937.

17. García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. (2013) Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends. Cem. Concr. Res. 52 [10], 112–122.

18. Fernández-Jiménez, A.; Flores, E.; Maltseva, O.; García-Lodeiro, I.; Palomo A. (2013) Hybrid alkaline cements. Part III: Durability and industrial applications. Roman J. Mater. 43 [2], 195–200. WOS:000320638300009.

19. Donatello, S.; García-Lodeiro, I.; Fernández-Jimenez, A.; Palomo, A. (2014) Some durability aspects of hybrid alkaline cements. Proceed. MATEC Web of Conferences, 11 [01001], 1–3.

20. Janotka, I.; Bacuvcík, M.; Martauz, P.; Strigác, J. (2014) Chemical resistance of novel hybrid cement in various aggressive solutions. Proceed. RILEM international workshop on performance-based specification and control of concrete durability. paper ID006, 17–24. (Zagreb, Croatia).

21. Cheng, T.W.; Chiu, J.P. (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Miners. Eng. 16 [3], 205–210.

22. Palacios, M.; Puertas, F. (2007) Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cem. Concr. Res. 37, [6], 691–702.

23. Mehta, P.K.; Monteiro, P.J.M. (2013) Concrete: Microstructure, Properties, and Materials, Chapter 6.8.3. Expansive cements, Fourth edition, McGraw-Hill, 224–227.

24. CEN/TR 196-4 (2007) Methods of testing cement - Part 4: Quantitative determination of constituents.

25. EN 15167-1: 2006, Ground granulated blast furnace slag for use in concrete, mortar and grout - Part 1: Definitions, specifications and conformity criteria.

26. Paul, M. (2005) Application of the Rietveld method in the cement industry. Proceed. Microstructure Analysis in Materials Science, 1-3. (Freiberg, Germany).

27. Schmidt, R.; and Eisenhowen, R. Laboratory Report XRD 65 Quantitative phase analysis of blast furnace slag cements, BRUKER AXS Internal material (

28. EN 14216 (2004) Cement. Composition, specifications and conformity criteria for very low heat special cements.

29. EN 196-1 (2005) Methods of testing cement. Part 1: Determination of strength.

30. EN 197-1 (2011) Cement. Part 1: Composition, specification and conformity criteria for common cements.

31. SK Certificate of Conformity (2013) H-CEMENT No. SK04-ZSV-1800, TSÚS Bratislava.

32. Technical Approval (2013) H-CEMENT No. TO-13/0074, TSÚS, Bratislava.

33. EN 206-1 (2000) Concrete. Part 1: Specification, performance, production and conformity.

34. EN 12390-3 (2009) Testing hardened concrete. Compressive strength of test specimens.

35. EN 12350-2 (2009) Testing fresh concrete. Slump-test.

36. STN 73 1311 (1986) Testing concrete mixture and concrete. Common provisions.

37. EN 12390-2 (2009) Testing hardened concrete. Making and curing specimens for strength tests.

38. EN 12350-6 (2009) Testing fresh concrete. Density.

39. EN 12350-7 (2009) Testing fresh concrete. Air content. Pressure methods.

40. STN 73 1320 (1987) Determination of volume changes of concrete.

41. EN 12390-5 (2009) Testing hardened concrete. Flexural strength of test specimens.

42. EN 12390-7 (2009) Testing hardened concrete. Density of hardened concrete.

43. STN 73 1371 (1981) Method of ultrasonic pulse testing of concrete.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support