Materiales de Construcción, Vol 66, No 323 (2016)

The exploitation of sludge from aggregate plants in the manufacture of porous fired clay bricks

M. A. Chamorro-Trenado
Department of Architecture and Building Engineering. CATS Research Group (Construction, Advanced Technologies and Sustainability). Higher Polytechnic School of the University of Girona, Spain

M. M. Pareta-Marjanedas
Department of Architecture and Building Engineering. CATS Research Group (Construction, Advanced Technologies and Sustainability). Higher Polytechnic School of the University of Girona, Spain

B. E. Berthelsen-Molist
CATS Research Group (Construction, Advanced Technologies and Sustainability). TERRAM Association, Spain

F. X. Janer-Adrian
CATS Research Group (Construction, Advanced Technologies and Sustainability). TERRAM Association, Spain


Aggregates (gravel and sand) are, after water, the Earth’s second most used natural resource, representing about 50% of all consumed mineral resources. Aggregate production generates a large quantity of waste from the aggregate washing process. This waste is made up of suspended solids – sludge – which has a great environmental impact. It is deposited in huge troughs because of the impossibility of discharging it directly into rivers. Many plants have incorporated decanters and filter presses to separate the solid from the liquid fraction. This paper evaluates the possibility of exploiting the solid fraction (i.e. sludge) in the manufacture of fired clay bricks. The added value of these bricks is, on the one hand, the exploitation of sludge as a currently useless waste product, and on the other, the use of this sludge to enhance the physical and mechanical properties of conventional fired clay bricks.


Brick; Ceramic; Waste treatment; Physical properties; Mechanical properties

Full Text:



1. Dondi, M.; Marsigli, M.; Fabbri, B. (1997) Recycling and industrial and urban wastes in brick production – A review. Tile & Brick International 13 [3], 218–225.

2. Dondi, M.; Marsigli, M.; Fabbri, B. (1997) Recycling and industrial and urban wastes in brick production – A review (Part 2). Tile & Brick International 13 [4], 302–309.

3. Raut, S.P.; Ralegaonkar, R.V.; Mandavgane, S.A. (2011) Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Construc. Build. Mat. 25, 4037–4042.

4. Aeslina, A.; Mohajerani, A. (2011) Bricks: an excellent Building material for recycling wastes – A review. Proceedings of the last International Conference Environmental Management and Engineering. 2011 Calgary, AB, Canada, 108-115.

5. Zhang, L. (2013) Production of bricks from waste materials – A review. Construc. Build. Mat. 47, 643–655.

6. Muñoz, P.; Morales, M.P.; Mendívil, M.A.; Mu-oz, L. (2014) Fired clay bricks manufactured by adding waste as a sustainable construction material – A review. Construc. Build. Mat. 63, 97–107.

7. Monteiro, S.N.; Fontes, C.M. (2014) On the production of fired clay bricks from waste materials: A critical update. Construc. Build. Mat. 68, 599–610.

8. Blanco, I.; Rodas. M.; Sánchez, C.J. (2000) Caracterización mineralògica y aplicacions cerámicas de los lodos procedentes del lavado de áridos naturales. Cadernos Laboratorio Xeolóxico de Laxe 25, 377–380.

9. Oliver, I. (2002) Estudi de l'aprofitament de subproductes industrials procedents del tractament d'àrids com a matèria primera ceràmica, Universidad Politécnica de Catalu-a, Departamento de Ingeniería del Terrano, Cartografia y Geofisica (minor thesis).

10. Galán-Arboleas, R.J.; Merino, A.; Bueno, S. (2013) Utilización de las nuevas materias primas y residuos industriales para mejorar las posibilidades del uso de los materiales cerámicos del área de Bailén (Jaén). Mater. Construcc. 63 [312], 553–568.

11. Costafreda, J.L. (2008) Geología, caracterización y aplicaciones de las rocas zeolíticas del complejo volcánico de Cabo de Gata (Almería).Universidad Politécnica de Madrid, Escuela Técnica Superior de Ingenieros de Minas (doctoral thesis).

12. UNE 103102:1995. Grain size analysis of fine soils by sedimentation. Densimetric method, AENOR, Spain based on ASTM D-422-63 (2007)e2. Standard test method for particle-size analysis of soils, ASTM International.

13. UNE 103103:1994. Determination of liquid limit of soil using Casagrande method, AENOR, Spain.

14. UNE 103104:1993. Determination of plastic limit of soil, AENOR, Spain.

15. UNE 103108:1996. Determination of shrinkage characteristics of soil, AENOR, Spain.

16. ASTM 427-04 (2008) Test method for shrinkage factors of soils by the mercury method, ASTM International.

17. Barbeta, G. (2002) Mejora de la tierra estabilizada en el desarrollo de una arquitectura sostenible hacia el siglo XXI, Universidad Politécnica de Catalu-a, Departamento de Construcciones Arquitectónicas I (doctoral thesis).

18. UNE 103301:1994. Determination of soil density. Hydrostatic balance method, AENOR, Spain.

19. UNE 103105:1993. Determination of minimum sand density, AENOR, Spain.

20. UNE-EN 77221:2011. Test methods for brick masonry. Part 21: Determination of water absorption for fired clay and silica calcareous brick masonry by cold water absorption, AENOR, Spain.

21. UNE-EN 72211:2011. Test methods for brick masonry. Part 11: Determination of water absorption by capillarity for concrete masonry, autoclaved cellular concrete, artificial and natural stone, and initial rate of absorption of fired clay brick masonry, AENOR, Spain.

22. UNE-EN 7721:2011. Test Methods for brick masonry. Part 1: Determination of compressive strength, AENOR, Spain.

23. ASTM D559-03. Standard test methods for wetting and drying compacted soil-cement mixtures.

24. ASTM D560-03. Standard test methods for freezing and thawing compacted soil-cement mixtures, ASTM International.

25. NLT-303/72. Freeze-thaw performance of soil-cement specimens, CEDEX, Spain.

26. UNE 7033:1951. Freeze and permeability tests for tile and cement floor tiles, AENOR, Spain and UNE 67028:1997 EX. Fired clay ceramic bricks. Freeze test, AENOR, Spain.

27. Laaroussi, N.; Lauriat, G.; Garoum, M.; Cherki, A.; Jannot, Y. (2014) Measurement of thermal properties of brick materials based on clay mixtures. Construc. Build. Mat. 70, 351–361.

28. Bal, H.; Jannot, Y.; Gaye, S.; Demeurie, F. (2013) Measurement and modelisation of the thermal conductivity of a wet composite porous medium: laterite based bricks with millet waste additive. Construc. Build. Mat. 41, 586–593.

29. UNE-EN ISO 8990:1997; Determination of thermal transmission properties in a stable system. Hot box and calibration methods, AENOR, Spain.

30. CTE (2010) Spanish Technical Building Code. Catalogue of Building Elements, Instituto Eduardo Torroja de la Construcción, Spain.

31. CTE. DA DB-HE/1 (2015) Spanish Technical Building Code. Supporting Document of the Basic Document, Saving Power/1. Ministerio de Fomento, Spain.

32. Stoch, L.; Sikora, W. (1976) Transformations of micas in the process of kaolinitization of granites and gneisses. Clays and Clay Minerals 24, 156–162

33. Swapan, Kr.D.; Kausik, D. (2003) Differences in densification behaviour of K-and Na-Feldspar-containing porcelain bodies. Thermochimica Acta 406, 199–206.

34. Boussak, H.; Chemani, H.; Serier, A. (2015) Characterization of porcelain tableware formulation containing bentonite clay. Int. J. Physic. Sci. 10, 38–45.

35. Faust, G.T. (1950) Thermal analysis studies on carbonates. I. Aragonite and calcite. American Mineralogist 35, 207–224.

36. Vázquez, M.; Jiménez-Millán, J. (2004) Materias primas ricas en arcilla de las Capas Rojas Triásicas (Norte de Jaén, Espa-a) para fabricar materiales de construcción. Mater. Construcc. 54 [273], 5–20.

37. CTE. DB-SE-F (2009) Spanish Technical Building Code. Basic document on structural safety and masonry, Ministerio de Fomento, Spain.

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support