Materiales de Construcción, Vol 66, No 324 (2016)

Contributions to the study of porosity in fly ash-based geopolymers. Relationship between degree of reaction, porosity and compressive strength

Y. Luna-Galiano
University of Seville, School of Engineering, Chemical and Environmental Engineering Department, Spain

C. Fernández-Pereira
University of Seville, School of Engineering, Chemical and Environmental Engineering Department, Spain

M. Izquierdo
School of Biosciences, University of Nottingham, United Kingdom


The main contribution of this paper relates to the development of a systematic study involving a set of parameters which could potentially have an impact on geopolymer properties: curing temperature, type of activating solution, alkali metal in solution, incorporation of slag (Ca source) and type of slag used. The microstructures, degrees of reaction, porosities and compressive strengths of geopolymers have been evaluated. Geopolymers prepared with soluble silicate presented a more compacted and closed structure, a larger amount of gel, lower porosity and greater compressive strength than those prepared with hydroxides. On the other hand, Na-geopolymers were more porous but more resistant than K-geopolymers. Although there is an inverse relation between degree of reaction and porosity, between compressive strength and porosity it is not always inversely proportional and could, in some cases, be masked by changes produced in other influencing parameters.


Fly ash; Blast furnace slag; Alkali-activated cement; Compressive Strength; Pore size distribution

Full Text:



WWCCPN. World-Wide Coal Combustion Products Network. (2011) Last access: 2011.

Davidovits, J. (1991) Geopolymers: inorganic polymeric new materials. J. Therm. Anal. 37, 1633–1656

Davidovits, J. (2005) The Poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry, Geopolymer chemistry and sustainable development, Proceedings of the World Congress Geopolymer, Perth, Australia (2005).

Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lukey, G.C. (2002) The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers. Chem. Eng. J. 89, 63–73

Xu, J.Z.; Zhou, Y.L.; Chang, Q.; Qu, H.Q. (2006) Study on the factors of affecting the immobilization of heavy metals in fly ash-based geopolymers. Mater. Lett. 60, 820–822

Izquierdo, M.; Querol, X.; Davidovits, J.; Antenucci, D.; Nugteren, H.; Fernández-Pereira, C. (2009) Coal fly ash-slag-based geopolymers: Microstructure and metal leaching. J. Hazar. Mater. 166 [1], 561–566

Izquierdo, M.; Querol, X.; Phillipart, C.; Antenucci, D.; Towler, M. (2010) The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. J. Hazar. Mater. 176 [1–3], 623–628

Davidovits J. (2005) In Proceedings of the World Congress Geopolymer, Saint Quentin, France, 28 June–1 July pp. 9–15 (2005).

Sindhunata, Van Deventer, J.S.J.; Lukey, G.C.; Xu, H. (2006) Effect of curing temperature and silicate concentration on fly ash-based geopolimerization. Ind. Eng. Chem. Res. 45, 3559–3568

Trochez, J.J.; Mejía de Gutiérrez, R.; Rivera, J.; Bernal, S.A. (2015) Synthesis of geopolymer from spent FCC: Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Mater. Construcc. 65 [317].

Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Provis, J.L. (2015) Performance at high temperature of alkali-activated slag pastes produce with silica fume and rice husk based activators. Mater. Construcc. 65 [318] e049

Palomo, A.; Grutzeck, M.W.; Blanco, M.T. (1999) Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 29 [8], 1323–1329

Provis, J.L.; Van Deventer, J.S.J. (2009) Geopolymers. Structures, processing, properties and industrial applications, Woodhead publishing Limited and CRC press LLC, (2009).

Lloyd, R.R.; Provis, J.L.; Smeaton, K.J.; Van Deventer, J.S.J. (2009) Spatial distribution of pores in fly ash-based inorganic polymer gels visualised by Wood's metal intrusion. Micropor. Mesopor. Mater. 126, 32–39

Diamond, S. (2000) Mercury porosimetry. An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30, 1517–1525

Webb, P.A.; Orr, C. (1997) Analytical methods in fine particle technology. Micromeritics Instrument Corporation, Norcross, Ga USA (1997).

Zhang, Z.; Xiao, Y.; Huajun, Z. (2010) Potential application of geopolymers as protection coatings for marine concrete. II. Microstructure and anticorrosion mechanism. Appl. Clay. Science. 49 [1–2], 7–12

Smilauer, V.; Hlavacek, P.; Skvara, F.; Sulc, R.; Kopecky, L.; Nemecek, J. (2011) Micromechanical multiscale model for alkali activation of fly ash and metakaolin. J. Mater. Sci. 46 [20], 6545–6555

Kong, D.; Sanjayan, J.G.; Sagoe-Crentsil, K. (2007) Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 37 [12], 1583–1589

Park, S-S.; Kang, H-Y. (2006) Strength and microscopic characteristics of alkali-activated fly ash-cement. J. Chem. Eng. 23 [3], 367–373

Sindhunata; Provis, J.L.; Lukey, G.C.; Xu, H.; Van Deventer, J.S.J. (2008) Structural evolution of fly ash-based geopolymers in alkaline environments. Ind. Eng. Chem. Res. 47, 2991–2999.

Provis, J.L.; Myers, R.J.; White, C.E.; Rose, V.; Van Deventer, J.S.J. (2012) X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42, 855–864

Li, Z.; Liu, S. (2007) Influence of Slag as Additive on Compressive Strength of Fly Ash-Based Geopolymer. J. Mater. Civil. Eng. 19 [6], 470–474

Ma, Y.; Hu, J.; Ye, G. (2012) Effect of activating solution on mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash. J. Mater. Sci. 47 [11], 4568–4578

Pan, Z.; Feng, K-N.; Gong, K.; Korayem, A.H.; Sanjayan, J.; Duan, W-H.; Collins, F. (2013) Damping and microstructure of fly ash-based geopolymers. J. Mater. Sci. 48, 3128–3137

Bhowmick, A.; Ghosh, S. (2012) Effect of synthesizing parameters on workability and compressive strength of Fly ash based geopolymer mortar. Int. J. Civil. Struct. Eng. 3 [1], 168–177.

Duxson, P.; Lukey, G.C.; Separovic, F.; Van Deventer, J.S.J. (2005) Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44 [4], 832–839

Van Jaarsveld, J.G.S.; Van Deventer, J.S.J. (1999) The effect of the alkali metal activator on the properties of fly ash based geopolymers. Ind. Eng. Chem. Res. 38 [10], 3932–3941

Phair, J.W.; Van Deventer, J.S.J. (2002) Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int. J. Miner. Process. 66, 121–143

Phair, J.W.; Van Deventer, J.S.J. (2001) Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Miner. Eng. 14 [3], 289–304

Kim, J.T.; Seo, D.S.; Kim, G.J.; Lee, J.K. (2010) Influence of alkaline-activator content on the compressive strength of aluminosilicate-based geopolymer. J. Korean. Ceram. Soc. 47 [3], 216–222

Abdul Rahim, R.H.; Rahmiati, T.; Azizli, K.A.; Man, Z.; Nuruddin, M.F.; Ismail, L. (2015) Comparison of using NaOH and KOH activated fly ash-based geopolymer on the mechanical properties. Mater. Sci. Forum. 803 (Geopolymer and Green Technology Materials), 179–184.

Nugteren, H.; Davidovits, J.; Antenucci, D.; Fernández Pereira, C.; Querol, X. (2005) Geopolymerization of fly ash. In Proceedings in Word of Coal Ash Conference, (2005).

ASTM D-3682-78. "Major and Minor Elements in Coal and Coke Ash by atomic Absorption.

Arjuan, P.; Silbee, M.R.; Roy, D.M. (1997) Quantitative determination of the crystalline and amorphous phases in low calcium fly ash. In: Proceedings of the 10th international congress of the chemistry of cement, Gothenburg, Sweeden, 3, 2–6 (1997). ISBN: 9163054973 9789163054976

Fernández-Jiménez, A.; Palomo, A.; Criado, M. (2005) Microstructure development of alkali activated Fly ash cement: a descriptive model. Cem. Concr. Res. 35, 1204–1209

Fernández-Jiménez, A.; de la Torre, A.G.; Palomo, A.; López-Olmo, G.; Alonso, M.M.; Aranda, M.A.G. (2006) Quantitative determination of phases in the alkaline activation of fly ash. Part II: Degree of reaction. Fuel. 85, 1960–1969

Luna Galiano, Y.; Fernández Pereira, C.; Pérez, C.M.; Suarez, P. (2016) Influence of BFS content in the mechanical properties and acid attack resistance on fly ash based geopolymers. Key. Eng. Mat. 663, 50–61. (Processing ceramics from waste: A new raw material source for a global change)

ASTM C39/C39 M-05e2. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

Liabastre, A.A.; Orr. C. (1978) An evaluation of pore structure by mercury penetration. J. Colloid. Interf. Sci. 14 [1], 1–18

Ellison, A.H.; Kleman, R.B.; Schwartz, A.M.; Grubb, L.S.; Pretash. D.A. (1967) Contact angles of mercury on carious surfaces and the effect of temperature. J. Chem. Eng. Data. 12 [4], 607–609

Fernández-Jiménez, A.; Palomo, A. (2003) Characterization of fly ashes. Potential reactivity as alkaline cements. Fuel. 82 [8], 2259–2265

Palomo, A.; Krivenko, P.; García-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022

Yip, C.K.; Luckey, C.G.; Provis, J.L.; Van Deventer, J.S.J. (2008) Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38 [4], 554–564

Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. (2005) The coexistence of the geopolymeric gel and calcium silicate hydrated at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697

Sindhunata. (2006) The mechanisms and kinetics of fly ash based geopolymerization. Ph.D. Thesis of University of Melbourne. Australia.

Kriven, W.M.; Bell, J.L. (2004) Effect of alkali choice on geopolymer properties. Ceram. Eng. Sci. Proc. 25 [3–4], 99–104

Puligilla, S.; Mondal, P. (2013) Role of slag in microstructural development and hardening of fly ash-slag geopolymer. Cem. Concr. Res. 43, 70–80

Kang, H-J.; Ryu, G-S.; Koh, G-T.; Kang, S-T.; Park, J-J. (2011) Relationship between microscopic structures and compressive strength of alkali-activated fly ash mortar. Key Eng. Mat. 452–453 (Advances in Fracture and Damage Mechanics IX), 737–740.

Nemecek, J.; Smilauer, V.; Kopecky, L.; Nemeckova, J. (2010) Nanoindentation of alkali-activated fly ash. Transp. Res. Record. 2141 (Nanotechnology in Cement and Concrete 2010, Volume 1) 36–40.

Young, J.F.; Mindess, S.; Darwin, D. (2002) Concrete. Prentice Hall, Upper Saddle River (2002).

Fernández-Jiménez, A.; Palomo, A.; Criado, M. (2006) Alkali activated fly ash binders. A comparative study between sodium and potassium activators. Mater. Construcc. 56 [281], 51–65.

Kovalchuck, G.; Fernández-Jiménez, A.; Palomo, A. (2008) Alkali activated fly ash. Relationship between mechanical strength gains and initial ash chemistry. Mater. Construcc. 58 [291], 35–52.

Khale, D.; Chaudhary, R. (2007) Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42 [3], 729–746

Wang, J.; Wu, X-L.; Wang, J-X.; Liu, C-Z.; Lai, Y-M.; Hong, Z-K.; Zheng, J-P. (2012) Hydrothermal synthesis and characterization of alkali-activated slag-fly ashmetakaolin cementitious materials. Micropor. Mesopor. Mater. 155, 186–191

Mu-iz-Villarreal, M.S.; Manzano-Ramírez, A.; Sampieri- Bulbarela, S.; Gasca-Tirado, R.J.; Reyes-Araiza, J.L.; Rubio-Ávalos, J.C.; Pérez-Bueno, J.J.; Apatiga, L.M.; Zaldivar-Cadena, A.; Amigó-Borrás, V. (2011) The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Mater. Lett. 65 [6], 995–998

Kamseu, E.; Bignozzi, M.C.; Melo, U.C.; Leonelli, C.; Sglavo, V.M. (2013) Design of inorganic polymer cements: Effects of matrix strengthening on microstructure. Constr. Build. Mater. 38, 1135–1145

Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support