Materiales de Construcción, Vol 66, No 324 (2016)

TriDes – a new tool for the design, development and non-destructive evaluation of advanced construction steels


https://doi.org/10.3989/mc.2016.09815

R. Nevshupa
Institute of Construction Sciences “Eduardo Torroja” (IETCC-CSIC), Spain

E. Roman
Institute of Material Sciences of Madrid (ICMM-CSIC), Spain

K. E. Grinkevych
Frantsevich Institute for Problems of Materials Science of NASU, Ukraine

I. Martinez
Institute of Construction Sciences “Eduardo Torroja” (IETCC-CSIC), Spain

Abstract


Design and development of advanced steel types require establishing an optimal combination of mechanical strength, resistance to hydrogen degradation and durability, among others; however, the available tools for assessing some of these properties are limited. A novel tool for supporting the design and development of steel types was therefore created. This tool, called TriDes, is based on the phenomenon of mechanically stimulated gas emission and allows for determining mechanical properties and hydrogen concentration locally, with high spatial resolution and during different phases of the service life of construction steel elements. Its applicability to the development of pipe steel with improved durability, as well as to steel types used in marine environments, has been investigated.

Keywords


Steel; Mechanical properties; Physical properties; Characterization; Microstructure

Full Text:


HTML PDF XML

References


Robertson, I.; Sofronis, P.; Nagao, A.; Martin, M.L.; Wang, S.; Gross, D.W.; Nygren, K.E. (2015) Hydrogen Embrittlement Understood. Metall. Mater. Trans. A 46 [6], 2323-2341. https://doi.org/10.1007/s11661-015-2836-1

Hirth, J. (1980) Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11 [6], 861-890. https://doi.org/10.1007/BF02654700

Cwiek, J. (2009) Hydrogen degradation of high-strength steels. J. Achievments Mater. Manuf. Eng. 37, 193-212.

Nakamura, S.-i.; Suzumura, K. (2009) Hydrogen embrittlement and corrosion fatigue of corroded bridge wires. J. Constr. Steel Res. 65 [2], 269-277. https://doi.org/10.1016/j.jcsr.2008.03.022

Ettouney, M.M.; Alampalli, S. (2011) Infrastructure Health in Civil Engineering: Applications and Management, Boca Raton, CRC Press. https://doi.org/10.1201/b11174

Ganz, H.R. (2012) Effect of zinc on prestressing steel, Lausanne, FIB.

Kim, S.; Chun, Y.; Won, S.; Kim, Y.; Lee, C. (2013) Hydrogen Embrittlement Behavior of 430 and 445NF Ferritic Stainless Steels. Metall. Mater. Trans. A 44 [3], 1331-1339. https://doi.org/10.1007/s11661-012-1265-7

Jin, S.; Gayle, N.V.; Chen, C.T.; Lichamer, J.R.; Ghilarducci, C. (1980) Humidity-induced hydrogen embrittlement in an Fe-Cr-Co magnet alloy. Metall. Trans. A 11 [5], 854-856. https://doi.org/10.1007/BF02661218

Bond, G.M.; Robertson, I.M.; Birnbaum, H.K. (1988) Effects of hydrogen on deformation and fracture processes in high-ourity aluminium. Acta Metall. 36 [8], 2193-2197. https://doi.org/10.1016/0001-6160(88)90320-3

Michler, T.; Naumann, J. (2010) Microstructural aspects upon hydrogen environment embrittlement of various bcc steels. Int. J. Hydrogen Energy 35 [2], 821-832. https://doi.org/10.1016/j.ijhydene.2009.10.092

Wang, M.; Tasan, C.C.; Koyama, M.; Ponge, D.; Raabe, D. (2015) Enhancing Hydrogen Embrittlement Resistance of Lath Martensite by Introducing Nano-Films of Interlath Austenite. Metall. Mater. Trans. A 46 [9], 3797-3802. https://doi.org/10.1007/s11661-015-3009-y

Elices, M.; Ruiz, J.; Atienza, J.M. (2004) Influence of residual stresses on hydrogen embrittlement of cold drawn wires. Mater. Struct. 37 [5], 305-310. https://doi.org/10.1617/14028

Toribio, J.; Kharin, V. (2006) Effect of residual stressstrain profiles on hydrogen-induced fracture of prestressing steel wires. Mater. Sci. 42 [2], 263-271. https://doi.org/10.1007/s11003-006-0079-4

Sanchez, J.; Fullea, J.; Andrade, C.; de Andres, P.L. (2008) Hydrogen in alpha -iron: Stress and diffusion. Phys. Rev. B 78 [1], 014113. https://doi.org/10.1103/PhysRevB.78.014113

Palma Carrasco, J.; Silva Diniz, D.; Andrade Barbosa, J.M.; Almeida Silva, A. (2012) Numerical modeling of hydrogen diffusion in structural steels under cathodic overprotection and its effects on fatigue crack propagation. Materialwiss. Werkstofftech. 43 [5], 392- 398. https://doi.org/10.1002/mawe.201200971

Berger, H.; Polichar, R.; Rowe, W.J. (1987) Corrosion Detection by Real-Time Neutron Imaging, in Neutron Radiography, J. Barton, et al., Editors. Springer Netherlands. p. 563-570. https://doi.org/10.1007/978-94-009-3871-7_69

Castellote, M.; Fullea, J.; de Viedma, P.G.; Andrade, C.; Alonso, C.; Llorente, I.; Turrillas, X.; Campo, J.; Schweitzer, J.S.; Spillane, T.; Livingston, R.A.; Rolfs, C.; Becker, H.W. (2007) Hydrogen embrittlement of high-strength steel submitted to slow strain rate testin g studied by nuclear resonance reaction analysis and neutron diffraction. Nucl. Instrum. Methods Phys. Res., Sect. B 259 [2], 975-983. https://doi.org/10.1016/j.nimb.2007.03.084

Awane, T.; Fukushima, Y.; Matsuo, T.; Matsuoka, S.; Murakami, Y.; Miwa, S. (2011) Highly Sensitive Detection of Net Hydrogen Charged into Austenitic Stainless Steel with Secondary Ion Mass Spectrometry. Anal. Chem. 83 [7], 2667-2676. https://doi.org/10.1021/ac103100b PMid:21401058

Mil man, Y.; Nykyforchyn, H.; Hrinkevych, K.; Tsyrul nyk, O.; Tkachenko, I.; Voloshyn, V.; Mordel, L. (2012) Assessment of the In-Service Degradation of Pipeline Steel by Destructive and Nondestructive Methods. Mater. Sci. 47 [5], 583-589. https://doi.org/10.1007/s11003-012-9431-z

Virmani, Y.P.; Clemena, G.G. (1998) Corrosion protection - concrete bridges, U.S: Department of Transportation, Federal Highway Administration, McLean, Virginia.

Spencer, B.F.; Ruiz-Sandoval, M.E.; Kurata, N. (2004) Smart sensing technology: opportunities and challenges. Struct. Control Health Monit. 11 [4], 349-368. https://doi.org/10.1002/stc.48

Nevshupa, R.; Roman, E.; Konovalov, P.; de Segovia, J.L. (2008) New method to determine gas content in materials. J. Phys.: Conf. Ser. 100, 072030. https://doi.org/10.1088/1742-6596/100/7/072030

Nevshupa, R.; Cruz, K.; Martinez, I.; Ramos, S.; Llorente, I.; Roman, E. (2016) Triboemission of gases from iron and construction steel: The effect of surface conditions.

Nevshupa, R.A.; Roman, E.; de Segovia, J.L. (2013) Contamination of vacuum environment due to gas emission stimulated by friction. Tribol. Int. 59, 23–29. https://doi.org/10.1016/j.triboint.2012.07.009

?epa, P. (1992) Mechanically induced desorption. Vacuum 43 [5–7], 367–371. http://dx.doi.org/10.1016/ 0042-207X(92)90039-Y.

Nevshupa, R.A.; Roman, E.; de Segovia, J.L. (2008) Origin of hydrogen desorption during friction of stainless steel by alumina in ultrahigh vacuum. J. Vac. Sci. Technol. A 26 [5], 1218–1223. https://doi.org/10.1116/1.2968682

Nevshupa, R.; Ares, J.R.; Fernández, J.F.; del Campo, A.; Roman, E. (2015) Tribochemical Decomposition of Light Ionic Hydrides at Room Temperature. J. Phys. Chem. Lett. 6 [14], 2780–2785. https://doi.org/10.1021/acs.jpclett.5b00998 PMid:26266863

Nevshupa, R.A.; Roman, E.; de Segovia, J.L. (2010) Model of the effect of local frictional heating on the tribodesorbed gases from metals in ultra-high vacuum. Int. J. Mater. Prod. Technol. 38 [1], 57–65. https://doi.org/10.1504/IJMPT.2010.031895

Nevshupa, R. (2009) The role of athermal mechanisms in the activation of tribodesorption and triboluminisence in miniature and lightly loaded friction units. J. Frict. Wear 30 [2], 118–126. https://doi.org/10.3103/S1068366609020081

Frisch, B.; Thiele, W.-r. (1984) The tribologically induced effect of hydrogen effusion and penetration in steels. Wear 95 [2], 213–227. https://doi.org/10.1016/0043-1648(84)90119-4

Peressadko, A.G.; Nevshupa, R.A.; Deulin, E.A. (2002) Mechanically stimulated outgassing from ball bearings in vacuum. Vacuum 64 [3–4], 451–456. https://doi.org/10.1016/S0042-207X(01)00335-9

Rusanov, A.; Nevshupa, R.; Fontaine, J.; Martin, J.-M.; Le Mogne, T.; Elinson, V.; Lyamin, A.; Roman, E. (2015) Probing the tribochemical degradation of hydrogenated amorphous carbon using mechanically stimulated gas emission spectroscopy. Carbon 81, 788–799. https://doi.org/10.1016/j.carbon.2014.10.026

Rusanov, A.; Nevshupa, R.; Martin, J.-M.; Garrido, M.Á.; Roman, E. (2015) Tribochemistry of hydrogenated amorphous carbon through analysis of Mechanically Stimulated Gas Emission. Diamond Relat. Mater. 55, 32–40. https://doi.org/10.1016/j.diamond.2015.02.007

Merzlikin, S.V.; Mingers, A.M.; Kurz, D.; Hassel, A.W. (2014) An electrochemical calibration unit for hydrogen analysers. Talanta 125, 257–264. https://doi.org/10.1016/j.talanta.2014.02.008 PMid:24840442

Grinkevich, K. (2003) Some postulates of the structural dynamic concept of the tribosystem and their practical implementation. J. Frict. Wear 24 [3], 344–350. http://www.nasb.gov.by/eng/publications/trenie/tre24_3.php.

Roman, E.; Nevshupa, R.; de Segovia, J.L.; Konovalov, P.I.; Menshikov, I.P. (2007) Method and apparatus for analysis of gas content in solids and surface coatings. Patent WO2007ES70216 20071220, 23.02.2007

Nevchoupa, R.A.; De Segovia, J.L.; Deulin, E.A. (1999) An UHV system to study gassing and outgassing of metals under friction. Vacuum 52 [1–2], 73–81. https://doi.org/10.1016/S0042-207X(98)00209-7

Gabetta, G.; Nykyforchyn, H.M.; Lunarska, E.; Zonta, P.P.; Tsyrulnyk, O.T.; Nikiforov, K.; Hredil, M.I.; Petryna, D.Y.; Vuherer, T. (2008) In-service degradation of gas trunk pipeline X52 steel. Mater. Sci. 44 [1], 104–119. https://doi.org/10.1007/s11003-008-9049-3

Bockris, J.O.M.; Subramanyan, P.K. (1971) Hydrogen Embrittlement and Hydrogen Traps. J. Electrochem. Soc. 118 [7], 1114–1119. https://doi.org/10.1149/1.2408257

Zuo, X.; Zhou, Z. (2015) Study of Pipeline Steels with Acicular Ferrite Microstructure and Ferrite-bainite Dual-phase Microstructure. Mater. Res. 18, 36–41. https://doi.org/10.1590/1516-1439.256813

Tsyrul'nyk, O.T.; Nykyforchyn, H.M.; Zvirko, O.I.; Petryna, D.Y. (2004) Embrittlement of the steel of an oil-trunk pipeline. Mater. Sci. 40 [2], 302–304. https://doi.org/10.1007/s11003-005-0018-9

Mil'man, Y.V.; Grinkevich, K.E.; Mordel, L.V. (2014) Energy concept of hardness for instrumented indentation. Russ. Metall. (Metally) 2014 [4], 256–262. https://doi.org/10.1134/s0036029514040089

Capelle, J.; Dmytrakh, I.; Azari, Z.; Pluvinage, G. (2013) Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52. Int. J. Hydrogen Energy 38 [33], 14356–14363. https://doi.org/10.1016/j.ijhydene.2013.08.118

Deulin, E.A.; Nevshupa, R.A. (1999) Deuterium penetration into the bulk of a steel ball of a ball bearing due to its rotation in vacuum. Appl. Surf. Sci. 144–145, 283–286. https://doi.org/10.1016/S0169-4332(98)00811-3

Deulin, E.A.; Goncharov, S.A.; de Segovia, J.L.; Nevshupa, R.A. (2000) Mechanically stimulated solution of adsorbed hydrogen and deuterium in steel. Surf. Interface Anal. 30 [1], 635–637. https://doi.org/10.1002/1096-9918(200008)30:1<635::AID-SIA855>3.0.CO;2-W

Nykyforchyn, H.; Lunarska, E.; Tsyrulnyk, O.T.; Nikiforov, K.; Genarro, M.E.; Gabetta, G. (2010) Environmentally assisted "in-bulk" steel degradation of long term service gas trunkline. Eng. Failure Anal. 17 [3], 624–632. https://doi.org/10.1016/j.engfailanal.2009.04.007

Det Norske Veritas AS (2013) Offshore mooring chain. Standard DNV-OS-E302.

Nevshupa, R.A.; de Segovia, J.L.; Deulin, E.A. (1999) Outgassing of stainless steel during sliding friction in ultra-high vacuum. Vacuum 53 [1–2], 295–298. https://doi.org/10.1016/S0042-207X(98)00366-2




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es