Materiales de Construcción, Vol 66, No 324 (2016)

Influence of the synergy between mineral additions and Portland cement in the physical-mechanical properties of ternary binders


https://doi.org/10.3989/mc.2016.10815

Á. Fernández
Eduardo Torroja Institute for Construction Science, IETcc-CSIC, Spain

M. C. Alonso
Eduardo Torroja Institute for Construction Science, IETcc-CSIC, Spain

J. L. García-Calvo
Eduardo Torroja Institute for Construction Science, IETcc-CSIC, Spain

B. Lothenbach
Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Switzerland

Abstract


The paper deals with the synergistic effect of mineral additions on the physical-mechanical performance of ternary blends prepared with different Portland cements (PC). The effect in setting and heat flow release is also analyzed. The mineral additions used are blast furnace slag (BFS), fly ash (FA) and limestone filler (LF). PCs with different C3A and alkali content have been tested to study the synergy in ternary blends. Ternary binders with PC low in C3A and alkali content achieve similar mechanical strength gain as plain PC and refinement of pore size distribution from early hydration ages due to the acceleration of PC hydration induced by the mineral additions. In contrast, ternary binders with PC higher in C3A and alkali content have a delayed in mechanical strength at early hydration ages, but significantly higher at long hydration times.

Keywords


Blended cement; Hydration; Physical properties; Mechanical properties

Full Text:


HTML PDF XML

References


The European Cement Association. http://www.cembureau.be/sites/default/files/World%20Cement%20production_2.pdf

Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. (2011) Sustainable cement production-present and future. Cem. Concr. Res. 41, 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019

Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. (2008) Sustainable development and climate change initiatives. Cem. Concr. Res. 38, 115–127. https://doi.org/10.1016/j.cemconres.2007.09.008

Deja, J.; Uliasz-Bochencyzk, A.; Mokrycki, E. (2010) CO2 emissions from Polish cement industry. International Journal of Greenhouse Gas Control 4, 583–588. https://doi.org/10.1016/j.ijggc.2010.02.002

De Weerdt, K.; Kjellsen, K.O.; Sellevold, E.; Justnes, H. (2011) Synergy between fly ash and limestone powder in ternary cements. Cem. Concr. Comp. 33, 30–38. https://doi.org/10.1016/j.cemconcomp.2010.09.006

Roy, D.M, (1999) Alkali-activated cements Opportunities and challenges. Cem. Concr. Res. 29, 249–254. https://doi.org/10.1016/S0008-8846(98)00093-3

Puertas, F.; Fernández-Jiménez, A. (2003) Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Comp. 25, 287–292. https://doi.org/10.1016/S0958-9465(02)00059-8

Puertas, F.; Torres-Carrasco, M. (2014) Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterization. Cem. Concr. Res. 57, 95–104. https://doi.org/10.1016/j.cemconres.2013.12.005

Sanjuán, M.Á. (2013) Los cementos ternarios y visión general del futuro de las normas de especificaciones de cementos comunes, Madrid. https://www.ieca.es/Uploads/ docs/3_Los_cementos_ternarios_y_visi%F3n_general_del_futuro.pdf.

Wu, Z.; Naik, T.R. (2002) Properties of concrete produced from multicomponent blended cements. Cem. Concr. Res. 32, 1937–1942. https://doi.org/10.1016/S0008-8846(02)00907-9

Carrasco, M.F.; Menéndez, G.; Bonavetti, V.; Irassar, E.F. (2005) Strength optimization of "tailor-made cement" with limestone filler and blast furnace slag. Cem. Concr. Res. 35, 1324–1331. https://doi.org/10.1016/j.cemconres.2004.09.023

Bonavetti, V.; Donza, H.; Menéndez, G.; Cabrera, O.; Irassar, E.F. (2003) Limestone filler cement in low w/c concrete: A rational use of energy, Cem. Concr. Res. 33, 865–871. https://doi.org/10.1016/s0008-8846(02)01087-6

Ortega, J.M.; Sánchez, I.; Climent, M.Á. (2013) Influence of different curing conditions on the pore structure and the early age properties of mortars with fly ash and blastfurnace slag. Mater. Construcc. 63, 219–234.

Bijen, J. (1996) Benefits of slag and fly ash. Constr. Build. Mat 10, 309–314. https://doi.org/10.1016/0950-0618(95)00014-3

Menéndez, G.; Bonavetti, V.; Irassar, E.F. (2003) Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Composites 25, 61–67. https://doi.org/10.1016/S0958-9465(01)00056-7

Hale, W.M.; Freyne, S.F.; Bush Jr., T.D.; Russell, B.W. (2008) Properties of concrete mixtures containing slag cement and fly ash for use in transportation structures. Constr. Build. Mat. 22, 1990–2000. https://doi.org/10.1016/j.conbuildmat.2007.07.004

Ghrici, M.; Kenai, S.; Said-Mansour, M. (2007) Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cem. Concr. Composites 29, 542–549. https://doi.org/10.1016/j.cemconcomp.2007.04.009

Yilmaz, B.; Olgun, A. (2008) Studies on cement and mortar containing low-calcium fly ash, limestone, and dolomitic limestone. Cem. Concr. Comp. 30, 194–201. https://doi.org/10.1016/j.cemconcomp.2007.07.002

Hoshino, S.; Yamada, K.; Hirao, H. (2006) XRD/Rietveld analysis of the hydration and strength development of slag and limestone blended cement. Journal of Advanced Concrete Technology 4, 357–367. https://doi.org/10.3151/jact.4.357

Elkhadiri, I.; Diouri, A.; Boukhari, A.; Aride, J.; Puertas, F. (2002) Mechanical behaviour of variuos mortars made by combined fly ash and limestone in Moroccan Portland cement. Cem. Concr. Res. 32, 1597–1603. https://doi.org/10.1016/S0008-8846(02)00834-7

Fernández, Á.; García Calvo, J.L.; Alonso, M.C. (2015) The Ordinary Portland Cement composition to optimize the synergies of mineral additions of ternary binders in hydration process. Cem. Concr. Comp., in evaluation.

De Weerdt, K.; Ben Haha, M.; Le Saout, G.; Kjellsen, K.O.; Justnes, H.; Lothenbach, B. (2011) Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash, Cem Concr. Res. 41, 279–291. https://doi.org/10.1016/j.cemconres.2010.11.014

Alonso, M.C.; García Calvo, J.L.; Sánchez, M.; Fernández, Á. (2012) Ternary mixes with high mineral additions contents and corrosion related properties. Materials and Corrosion 63, 1078–1086. https://doi.org/10.1002/maco.201206654

Dehuai, W.; Zhaoyuan, C. (1997) On predicting compressive strengths of mortars with ternary blends of cement, GGBFS and Fly Ash. Cem. Concr. Res. 27, 487–493. https://doi.org/10.1016/S0008-8846(97)00039-2

Schöler, A.; Lothenbach, B.; Winnefeld, F.; Zajac, M. (2015) Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem. Concr. Comp. 55, 374–382. https://doi.org/10.1016/j.cemconcomp.2014.10.001

Chindaprasirt, P.; Jaturapitakkul, C.; Sinsiri, T. (2005) Effect of fly ash fineness on compressive strength and pore size of blended cement paste. Cem. Concr. Comp. 27, 425–428. https://doi.org/10.1016/j.cemconcomp.2004.07.003

Bogue, R.H (1929). Calculation of the compounds in Portland cement. Industrial and Engineering Chemistry 1, 192–197. https://doi.org/10.1021/ac50068a006

Rahhal, V.; Talero, R. (2008) Calorimetry of Portland cement with metakaolins, quartz and gypsum additions. J. Therm. Anal. Calorim. 91, 825–834. https://doi.org/10.1007/s10973-006-8250-6

Baert, G.; Hoste, S.; De Schutter, G.; De Belie, N. (2008) Reactivity of fly ash in cement paste studied by means of thermogravimetry and isothermal calorimetry. J. Therm. Anal. Calorim. 94, 485–492. https://doi.org/10.1007/s10973-007-8787-z

Oey, T.; Kumar, A.; Bullard, J.W.; Neithalath, N.; Sant, G. (2013) The filler effect: the influence of filler content and surface area on cementitious reaction rates, J. Am. Ceram. Soc. 96, 1978–1990. https://doi.org/10.1111/jace.12264

Berodier, E.; Scrivener, K. (2014) Understanding the filler effect on the nucleation and growth of C-S-H, J. Am. Ceram. Soc. 97, 3764–3773. https://doi.org/10.1111/jace.13177

Mounanga, P.; Khokhar, M.I.A.; El Hachem, R.; Loukili, A. (2011) Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler. Materials and Structures 44, 437–453. https://doi.org/10.1617/s11527-010-9637-1

Torrenti, J.M.; Bendboudjema, F. (2005) Mechanical threshold of cementitious materials at early age, Materialsand Structures 38, 299–304. https://doi.org/10.1007/BF02479294

Gesoglu, M.; Özbay, E. (2007) Effect of mineral admixtures on fresh and hardened properties of self-compacting concretes: binary, ternary and quaternary systems. Materials and Structures 40, 923–937. https://doi.org/10.1617/s11527-007-9242-0

Brooks, J.J.; Megat Johari, M.A.; Mazloom, M. (2000) Effect of admixtures on the setting times of high-strength concrete. Cem. Concr. Comp. 22, 293–301. https://doi.org/10.1016/S0958-9465(00)00025-1

Sáez del Bosque, I.F.; Martínez-Ramírez, S.; Blanco-Varela, M.T. (2015). Calorimetric study of the early stages of the nanosilica-tricalcium silicate hydration. Effect of the temperature. Mater. Construcc. 65.

Gawlicki, M.; Nocún-Wczelik, W.; Bak, L. (2010) Calorimetry in the studies of cement hydration. Setting and hardening of Portland cement-calcium aluminate cement mixtures. J Therm Anal Calorim 100, 571–576. https://doi.org/10.1007/s10973-009-0158-5

D. Jansen, F. Goetz-Neunhoeffer, B. Lothenbach, J. Neubauer (2012) The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD. Cem Concr Res, 42, 134–138. https://doi.org/10.1016/j.cemconres.2011.09.001

Ballim, Y.; Graham, P.C. (2009) The effects of supplementary cementing materials in modifying the heat of hydration of concrete. Materials and Structures 42, 803–811. https://doi.org/10.1617/s11527-008-9425-3

Soroka, I.; Stern, N. (1977) The effect of fillers on strength of cement mortars. Cem. Concr. Res. 7, 449–456. https://doi.org/10.1016/0008-8846(77)90073-4

Berry, E.E.; Hemmings, R.T.; Cornelius, B.J. (1990) Mechanisms of hydration in high volume fly ash pastes and mortars. Cem. Concr. Comp. 12, 253–261. https://doi.org/10.1016/0958-9465(90)90004-H

Güneyisi, E.; Gesoglu, M. (2008) Properties of self-compacting mortars with binary and ternary cementitious blends of fly ash and metakaolin. Materials and Structures 41, 1519–1531. https://doi.org/10.1617/s11527-007-9345-7

Voglis, N.; Kakali, G.; Chaniotakis, E.; Tsivilis, S. (2005) Portland-limestone cement, their properties and hydration compared to those of other composite cement. Cem. Concr. Comp. 27, 191–196. https://doi.org/10.1016/j.cemconcomp.2004.02.006

Feldman, R.F.; Carette, G.G.; Malhotra, V.M. (1990) Studies on of development of physical and mechanical properties of high-volume fly ash-cement pastes. Cem. Concr. Comp. 12, 245–251. https://doi.org/10.1016/0958-9465(90)90003-G

Ben Haha, M.; De Weerdt, K.; Lothenbach, B. (2010) Quantification of the degree of reaction of fly ash. Cem. Concr. Res. 40, 1620–1629. https://doi.org/10.1016/j.cemconres.2010.07.004

Deschner, F.; Münch, B.; Winnefeld, F.; Lothenbach, B. (2013) Quantification of fly ash in hydrated blended Portland cement pastes by backscattered electron imaging. Journal of Microscopy 251, 188–204. https://doi.org/10.1111/jmi.12061 PMid:23789966




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es