Materiales de Construcción, Vol 66, No 324 (2016)

Characterization of the properties of perlite geopolymer pastes


https://doi.org/10.3989/mc.2016.10415

G. M. Tsaousi
National Technical University of Athens (NTUA), Greece

I. Douni
National Technical University of Athens (NTUA), Greece

D. Panias
National Technical University of Athens (NTUA), Greece

Abstract


This paper deals with the characterization of perlite-based geopolymer pastes, using fine perlite as raw material. The present study examined the effects of the main synthesis parameters such as perlite to activator ratio, NaOH concentration, the addition of soluble silica to the activator, and curing temperatureon the setting time, the stability in an aquatic environment, the viscosity of the paste, and the compressive strength of the solidified geopolymers. The results showed that these inorganic polymer pastes are non-Newtonian shear thinning fluids that achieve low viscosities at high shear stresses. The optimum synthesis conditions for the geopolymer pastes proved to be a) a low initial NaOH concentration in the alkaline phase (2–5 M) and b) a solid to liquid ratio of 1.2–1.4 g/mL. If very fast setting is necessary, the pastes should be prepared with a soluble silica-doped alkaline activating phase and cured at high temperatures around 90 °C.

Keywords


Perlite; Geopolymer paste; Alkali activation; Characterization

Full Text:


HTML PDF XML

References


Davidovits, J. (2005) Geopolymer chemistry and sustainable development. In: Proceedings of the World Congress Geopolymer, Saint-Quentin, France, 9–15.

Barbosa, V.F.F.; MacKenzie, K.J.D. (2003) Thermal behavior of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 38 [2], 319–331. https://doi.org/10.1016/S0025-5408(02)01022-X

Davidovits, J. (1994) Properties of geopolymer cements, In: Proceedings of the first international conference on alkaline cements and concretes, Kiev, Ukraine, 131–149.

Swanepoel, J.C.; Strydom, C.A. (2002) Utilization of fly ash in a geopolymeric material. Appl. Geochem. 17 [8], 1143–1148. https://doi.org/10.1016/S0883-2927(02)00005-7

Nicholson, C.; Fletcher, R.; Miller, N.; Stirling, C.; Morris, J.; Hodges, S.; MacKenzie, K.; Schmücker, M. (2005) Building Innovation through Geopolymer Technology. Chemistry in New Zealand, 69, 10–12.

Ryu, G.S.; Lee Y.B.; Koh, K.T.; Chung, Y.S. (2013) The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Constr. Build. Mater. 47, 409–418. https://doi.org/10.1016/j.conbuildmat.2013.05.069

Vaou, V.; Panias, D. (2010) Thermal insulating foamy geopolymers from perlite. Miner. Eng. 23 [14], 1146–1151. https://doi.org/10.1016/j.mineng.2010.07.015

Sakkas, K.; Nomikos, P.; Sofianos, A.; Panias, D. (2014a) Sodium-based fire resistant geopolymer for passive fire protection. Fire Mater. 39 [3], 259–270. https://doi.org/10.1002/fam.2244

Sakkas, K.; Panias, D.; Nomikos, P.; Sofianos, A. (2014b) Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling Underground Space Technol. 43, 148–156. https://doi.org/10.1016/j.tust.2014.05.003

Barbosa, V.F.F.; MacKenzie, K.J.D.;Thaumatutgo, C. (2000) Synthesis and characterization of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers. Int. J. Inorg. Mater. 2 [4], 309–317. https://doi.org/10.1016/S1466-6049(00)00041-6

Xu, H.; Van Deventer, J.S.J. (2000) The geopolymerization of alumino-silicate minerals. Inter. J. Miner. Process. 59 [3], 247–266. https://doi.org/10.1016/S0301-7516(99)00074-5

Palomo, A.; Grutzeck, M.W.; Blanco, M.T. (1999) Alkali activated fly ashes-a cement for the future. Cem. Concr. Res. 29 [8], 1323–1329. https://doi.org/10.1016/S0008-8846(98)00243-9

Palomo, A.; Krivenko, P.; Garcia-Lodeiro, I.; Kavalerova, E.; Maltseva, O.; Fernández-Jiménez, A. (2014) A review on alkaline activation: new analytical perspectives. Mater. Construcc. 64 [315], e022. https://doi.org/10.3989/mc.2014.00314

Cheng, T.W.; Chiu, J.P. (2003) Fire resistant Geopolymer produced by granulated blast furnace slag. Miner. Eng. 16 [3], 205–210. https://doi.org/10.1016/S0892-6875(03)00008-6

Cundi, W.; Hirano, Y.; Terai, T.; Vallepu, R.; Mikuni, A.; Ikeda, K. (2005) Preparation of geopolymeric monoliths from red mu-PFBC ash fillers at ambient temperature, In: Proccedings of the World Congress Geopolymer, Saint Quentin, France, 85–87.

Panias, D.; Giannopoulou, I.; Perraki, T. (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf., A. 301 [1–3], 246–254. https://doi.org/10.1016/j.colsurfa.2006.12.064

Maragos, I.; Giannopoulou, I.; Panias, D. (2008) Synthesis of ferronickel slag-based geopolymers. Miner. Eng. 22 [2], 196–203. https://doi.org/10.1016/j.mineng.2008.07.003

Pontikes, Y.; Machiels, L.; Onisei, S.; Pandelaers, L.; Geysen, D.; Jones, P. T.; Blanpain, B. (2013) Slags with a high Al and Fe content as precursors for inorganic polymers. Appl. Clay. Sci. 73, 93–102. https://doi.org/10.1016/j.clay.2012.09.020

Komnitsas, K.; Zaharaki, D.; Perdikatsis, V. (2009) Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers. J. Hazard. Mater. 161 [2–3], 760–768. https://doi.org/10.1016/j.jhazmat.2008.04.055 PMid:18508195

Erdogan, S. (2014) Properties of Ground Perlite Geopolymer Mortars. J. Mater. Civ. Eng. 27 [7].

Vance, E. R.; Perera, D. S.; Imperia, P.; Cassidy, D. J.; Davis, J.; Gourley, J. T. (2009) Perlite waste as a precursor for geopolymer formation. J. Aust. Ceram. Soc. 45 [1], 44–49. http://apo.ansto.gov.au/dspace/handle/10238/3130.

U.S. Geological Survey, Mineral Commodity Summaries, January 2016.

Kaufhold, S.; Reese, A.; Schwiebacher,W.; Dohrmann, R.; Grathoff, G.H.; Warr, L.N.; Halisch, M.; Müller, C.; Schwarz-Schampera, U.; Ufer Kaufhold, K et al. (2014) Porosity and distribution of water in perlite from the island of Milos, Greece. Springer Plus 3:598, http://www.springerplus.com/ content/3/1/598. https://doi.org/10.1186/2193-1801-3-598

Rattanasak, U and Chindaprasirt, P. (2009) Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22 [12], 1073–1078. https://doi.org/10.1016/j.mineng.2009.03.022

Panagiotopoulou, Ch.; Kontori, E.; Perraki, Th.; Kakali, G. (2007) Dissolution of aluminosilicate minerals and byproducts in alkaline media. J. Mater. Sci. 42 [9], 2967–2973. https://doi.org/10.1007/s10853-006-0531-8

PQ Corporation Industrial Chemical Division—National Silicates, Fundamentals of Silicate Chemistry. Available at: http://www.pqcorp.com/corporate/aboutpq.asp (06/04/2006).

Falcone, J.S. (1982) Soluble Silicates, Edited by J.S Falcone, Jr, Published Washington, D.C.194: American Chemical Society, (1982).

Duxson, P.; Provis, J.; Lukey, G.; Mallicoat, S.; Kriven, W.; Van Deventer, J. (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf., A. 269 [1], 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060

Taxiarchou, M.; Panias, D.; Panagiotopoulou, Ch.; Karalis, Th.; Dedeloudis, A. (2013) Study on the suitability of volcanic amorphous aluminosilicate rocks (perlite) for the synthesis of Geopolymer-based concrete. ASTM International Symposium on Geopolymer Binder Systems, 1566, 34–53, https://doi.org/10.1520/STP156620120077

Skorina, T.; Tikhomirova I. (2012) Alkali silicate binders: Effect of SiO2/Na2O ratio and alkali metal ion type on the structure and mechanical properties. J. Mater. Sci.47 [12], 5050–5059., https://doi.org/10.1007/s10853-012-6382-6

Nicolic, I.; Durovic, D.; Zejak, R.; Karanovic, L.; Tadic, M.; Blecic, C., Radmilovic, V. (2013) Compressive strength and hydrolytic stability of fly ash based geopolymers. J. Ser. Chem. Soc. 78 [6], 851–863. https://doi.org/10.2298/JSC121024001N

Panias, D.; Giannopoulou, I. (2007) The geopolymerization technology for the utilization of mining and metallurgical solid wastes. In: Proceedings of European Metallurgical Conference, Dusseldorf, Germany, 625–640. EMC 2007. PMid:17416461

Davidovits, J. (2008) Geopolymer chemistry and applications, 2nd edn, Publisher: Institut Geopolymere, Saint Quentin, France, Chap. 26, 547–574. PMCid:PMC2751601

Heah, C.; Kamarudin, H.; Mustafa Al Bakri, A.; Bnhussain, M.; Luqman, M.; Khairul, Nizar, I.; Ruzaidi, C.; Liew, Y. (2012) Study of solid-to-liquid and alkaline activator ratios on kaolin based geopolymers. Const. Build. Mater. 35, 912–922. https://doi.org/10.1016/j.conbuildmat.2012.04.102

Chindaprasirt, P.; De Silva , P.; Sagoe-Crentsil, K.; Hanjitsuwan, S. (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J. Mater. Sci. 47 [12] , 4876–4883. https://doi.org/10.1007/s10853-012-6353-y

Gao, K.; Lin, K.L.; Wang, D.Y.; Hwang, C.L.; Shiu, H.S.; Chang, Y.M.;Cheng, T.W. (2013) Effects SiO2/Na2O molar ratio on mechanical properties and the microstructure of nano-SiO2 metakaolin-based geopolymers. Constr. Build. Mater. 53, 503–510. https://doi.org/10.1016/j.conbuildmat.2013.12.003

Zuda, L.; Pavlik, Z.; Rovnanikova, P.; Bayer, P.; Cerny, R. (2006) Properties of Alkali Activated Aluminosilicate Material after Thermal Load. Int. J. Thermophys. 27 [4], 1250–1263. https://doi.org/10.1007/s10765-006-0077-7

Lee, W.K.W.; Van Deventer, J. S. J. (2002) Structural reorganization of class F fly ash in alkaline silicate solutions. Colloids Surf., A. 211 [1], 49–66. https://doi.org/10.1016/S0927-7757(02)00237-6

Xu, H.; Van Deventer, J.S.J. (2003) The effect of alkali metals on the formation of geopolymeric gels from alkalifeldspars. Colloids Surf., A. 216 [1], 27–44. https://doi.org/10.1016/S0927-7757(02)00499-5




Copyright (c) 2016 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es