Materiales de Construcción, Vol 67, No 325 (2017)
The use of a volcanic material as filler in self-compacting concrete production for lower strength applications
https://doi.org/10.3989/mc.2017.09315
D. Burgos
Grupo de Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Universidad del Valle, Colombia http://orcid.org/0000-0003-1944-8596
A. Guzmán
Grupo de Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Universidad del Valle, Colombia http://orcid.org/0000-0001-9226-4852
K. M.A. Hossain
Department of Civil Engineering, Ryerson University, Canada http://orcid.org/0000-0002-7686-6957
S. Delvasto
Grupo de Materiales Compuestos (GMC), Escuela de Ingeniería de Materiales, Universidad del Valle, Colombia http://orcid.org/0000-0001-9443-8238
Abstract
Keywords
References
Kosmatka, S.H.; Kerkhoff, B.; Panarese, W.C.; Tanesi, J. (2004) Dise-o y Control de Mezclas de Concreto. Director (Primera Ed). Skokie, Illinois: Portland Cement Association.
Rodríguez Viacava, I.; Aguado de Cea, A.; Rodríguez de Sensale, G. (2012) Self-compacting concrete of medium characteristic strength. Constr. Build. Mater. 30, 776-782.
Valdez, P.; Barragán, B.; Girbes, I.; Shuttleworth, N.; Cockburn, A. (2010) Uso de residuos de la industria del mármol como filler para la producción de hormigones autocompactantes. Mater. Construcc. 61 [301], 61-76.
Felekoglu, B. (2007) Utilisation of high volumes of limestone quarry wastes in concrete industry (self-compacting concrete case). Resour. Conserv. Recy. 51 [4], 770-791. https://doi.org/10.1016/j.resconrec.2006.12.004
Nagaratnam, B.H.; Rahman, M.E.; Mirasa, A.K.; Mannan, M.A. (2014) Workability of self-compacting concrete using blended waste materials. Adv. Mater. Res. 1043, 273-277.
Massazza, F. (1993) Pozzolanic cements. Cem. Concr. Compos. 15 [4], 185-214. https://doi.org/10.1016/0958-9465(93)90023-3
Kirk, S.; Zuleta, R. (2000) A study of the volcanic ash originating from Mount Pinatubo, Philippines. Public Works. Philippines.
Hossain, K.; Lachemi, M. (2010) Fresh, mechanical, and durability characteristics of self-consolidating concrete incorporating volcanic ash. J. Mater. Civil Eng. 22 [7], 651-657. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000063
Güneyisi, E.; Geso_lu, M.; Al-Rawi, S.; Mermerda_, K. (2013) Effect of volcanic pumice powder on the fresh properties of self-compacting concretes with and without silica fume. Mater. Struc. 47 [11], 1857-1865.
Celik, K.; Jackson, M.D.; Mancio, M.; Meral, C.; Emwas, A.-H.; Mehta, P.K.; Monteiro, P.J.M. (2014) High-volume natural volcanic pozzolan and limestone powder as partial replacements for portland cement in self-compacting and sustainable concrete. Cem. Concr. Compos. 45, 136-147.
American society for testing and materials, ASTM C494/C494M-15a Standard specification for chemical admixtures for concrete. West Conshohocken, PA: ASTM, 2015.
Hossain, K. (2005) Volcanic ash and pumice as cement additives: pozzolanic, alkali-silica reaction and autoclave expansion characteristics. Cem. Concr. Res. 35 [6], 1141-1144. https://doi.org/10.1016/j.cemconres.2004.09.025
Burgos, D.M.; Cardona, L.M.; Delvasto, S. (2014) Estudio de dos materiales volcánicos y efecto del tipo de molienda en su reactividad. Rev. Ing. Constr. 29 [2], 159-174. https://doi.org/10.4067/S0718-50732014000200003
Burgos, D.M.; Cardona Ramírez, L.M.; Gordillo Suárez, M.; Delvasto Arjona, S. (2015) Evaluation and pozzolanic effects of the puracé volcanic material. Rev. EIA. Esc. Ing. Antioq. [23], 83-93. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-12372015000100008&lng=en&nrm=iso&tlng=es
Yahia, A.; Tanimura, M.; Shimoyama, Y. (2005) Rheological properties of highly flowable mortar containing limestone filler-effect of powder content and W/C ratio. Cem. Concr. Res. 35 [3], 532-539. https://doi.org/10.1016/j.cemconres.2004.05.008
The European guidelines for self-compacting concrete. Farnham, Reino Unido, 2005.
American society for testing and materials, ASTM C39/C39M-12 Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM, 2012.
American society for testing and materials, ASTM C496/C496 M-11 Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM, 2011.
American society for testing and materials, ASTM C78/C78 M-15a Standard test method for flexural strength of concrete (using simple beam with third-point loading). West Conshohocken, PA: ASTM, 2015.
American society for testing and materials, ASTM C642/C642-13 Standard test method for density, absorption, and voids in hardened concrete. West Conshohocken, PA: ASTM, 2013.
Swiss federal laboratories for materials science and technologies (1989). EMPA - SIA 162/1 Test No. 5 - Water conductivity. Swiss federal laboratories for materials science and technologies: Zurich, Suiza.
Uysal, M.; Yilmaz, K. (2011) Effect of mineral admixtures on properties of self-compacting concrete. Cem. Concr. Compos. 33 [7], 771-776. https://doi.org/10.1016/j.cemconcomp.2011.04.005
Bonavetti, V.L.; Rahhal, V.F. (2006) Interacción de Adiciones Minerales en Pastas de Cemento. Rev. Constr. 5 [2], 33-41. http://www.redalyc.org/articulo.oa?id=127619380004
Ramezanianpour, A.A.; Ghiasvand, E.; Nickseresht, I.; Mahdikhani, M.; Moodi, F. (2009) Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cem. Concr. Compos. 31 [10], 715- 720. https://doi.org/10.1016/j.cemconcomp.2009.08.003
Dogan, U.A.; Ozkul, M.H. (2015) The effect of cement type on long-term transport properties of self-compacting concretes. Constr. Build. Mater. 96, 641-647.
Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Contact us materconstrucc@ietcc.csic.es
Technical support soporte.tecnico.revistas@csic.es