Materiales de Construcción, Vol 67, No 326 (2017)

A Novel MK-based Geopolymer Composite Activated with Rice Husk Ash and KOH: Performance at High Temperature


https://doi.org/10.3989/mc.2017.02316

M. A. Villaquirán-Caicedo
Composite Materials Group, (CENM) School of Materials Engineering, University of Valle, Colombia
orcid http://orcid.org/0000-0001-5145-0472

R. Mejía de Gutiérrez
Composite Materials Group, (CENM) School of Materials Engineering, University of Valle, Colombia
orcid http://orcid.org/0000-0002-5404-2738

N. C. Gallego
Carbon & Composites Group, Materials Science & Technology Division Oak Ridge National Laboratory, United States
orcid http://orcid.org/0000-0002-8252-0194

Abstract


Geopolymers were produced using an environmentally friendly alkali activator (based on Rice Husk Ash and potassium hydroxide). Aluminosilicates particles, carbon and ceramic fibres were used as reinforcement materials. The effects of reinforcement materials on the flexural strength, linear-shrinkage, thermophysical properties and microstructure of the geopolymers at room and high temperature (1200 ÅãC) were studied. The results indicated that the toughness of the composites is increased 110.4% for geopolymer reinforced by ceramic fibres (G-AF) at room temperature. The presence of particles improved the flexural behaviour 265% for geopolymer reinforced by carbon fibres and particles after exposure to 1200 .C. Linear-shrinkage for geopolymer reinforced by ceramic fibres and particles and the geopolymer G-AF compared with reference sample (without fibres and particles) is improved by 27.88% and 7.88% respectively at 900 ÅãC. The geopolymer materials developed in this work are porous materials with low thermal conductivity and good mechanical properties with potential thermal insulation applications for building applications.

Keywords


Composite; Metakaolin; Alkali-activated cement; Mechanical properties; Thermal analysis

Full Text:


HTML PDF XML

References


Torres-carrasco, M.; Palomo, J.G.; Puertas, F. (2014) Sodium silicate solutions from dissolution of glass wastes . Statistical analysis. Mater. Construcc. 64 [314], 1-14. https://doi.org/10.3989/mc.2014.05213

Bajza, A.; Rousekova, I.; Zivica, V. (1998) Silica fumesodium hydroxide binding Systems. Cem. Concr. Res. 28 [1], 13-18. https://doi.org/10.1016/S0008-8846(97)00192-0

Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutierrez, R.; Provis, J.; Delvasto, S. (2011) Activation of Metakaolin/ Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste and Biomass Valorization. 3 [1], 99-108. https://doi.org/10.1007/s12649-011-9093-3

Detphan, S.;Chindaprasirt, P. (2009) Preparation of fly ash and rice husk ash geopolymer. Int. J. Miner. Metall. Mater. 16 [6], 720-726.

Trochez, J.J.; Mejía de Gutiérrez, R.; Rivera, J.; Bernal, S.A. (2015) Synthesis of geopolymer from spent FCC : Effect of SiO2/Al2O3 and Na2O/SiO2 molar ratios. Mater. Construcc. 65 [317], e046. https://doi.org/10.3989/mc.2015.00814

Robayo, E.; Mejía de Gutiérrez, R.; Gordillo, M. (2016) Natural pozzolan-and granulated blast furnace slag-based binary geopolymers. Mater. Construcc. 66 [321], e077. https://doi.org/10.3989/mc.2016.03615

Fawer, M.; Concannon, M.:Rieber, W. (1999) Life cycle inventories for the production of sodium silicates. Int. J. Life Cycle Asses. 4 [4], 201-212. https://doi.org/10.1007/bf02979498

Deabriges, J. (1982) Process for the manufacture of sodium silicate. United States Patent 4336235

Villaquirán-Caicedo, M.A.; Mejía de Gutierrez, R.; Sulekar, S.; Davis, C.;Nino, J. (2015) Thermal properties of novel binary geopolymers based on metakaolin and alternative silica sources. Appl. Clay Sci. 118, 276-282. https://doi.org/10.1016/j.clay.2015.10.005

Villaquirán-Caicedo, M.A.; Rodríguez, E.D.; Mejía de Gutierrez, R. (2015) Evaluacion microestructural de geopolimeros basados en metacaolin y fuentes alternativas de silice expuestos a temperaturas altas. Ing. Investig. y Tecnol. 16 [1], 113-122, ISSN 1405-7743.

Villaquirán-Caicedo M.A.; Mejía de Gutierrez, R. (2015) Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash, DYNA, 82 [194], 104-110. https://doi.org/10.15446/dyna.v82n194.46352

Nazari A.; Rohani, A.F. (2012) Alkali-activated geopolymer produced by seeded fly ash and rice husk bark ash. Adv. Cem. Res. 24 [5], 301-309. https://doi.org/10.1680/adcr.11.00038

Mejía, J.M.; Mejía de Gutierrez, R.;Montes, C. (2016) Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 118, 133-139. https://doi.org/10.1016/j.jclepro.2016.01.057

Haeng Heo, U.; Sankar, K.; Kriven, W.M.; Musil, S.S. (2014) Rice Husk Ash as a Silica Source in a Geopolymer Formulation," in Developments in Strategic Materials and Computational Design V: A Collection of Papers Presented at the 38th International Conference on Advanced Ceramics and Composites.

Fongang, R.T.; Pemndje, J.; Lemougna, P.N.; Melo, U.C.; Nanseu, C.P.; Nait-Ali, B.; Kamseu, E. and Leonelli, C. (2015) Cleaner production of the lightweight insulating composites: Microstructure, pore network and thermal conductivity," Energy Build. 107, 113-122. https://doi.org/10.1016/j.enbuild.2015.08.009

Bouzón, N.; Payá, J.; Borrachero M.V.; Soriano, L.; Tashima, M.M. and Monzó, J. (2014) Refluxed rice husk ash/NaOH suspension for preparing alkali activated binders, Mater. Lett. 115, 72-74. https://doi.org/10.1016/j.matlet.2013.10.001

Mejía, J.M.; Mejía de Gutierrez, R.; Puertas, F. (2013) Rice husk ash as a source of silica in alkali-activated fly ash and granulated blast furnace slag systems. Mater. Constr. 63 [311], 361-375.

Zivica, V. (2006) Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28 [1], 21-25. https://doi.org/10.1016/j.cemconcomp.2005.07.004

Prud'homme, E.; Michaud, P.; Joussein, E.; Peyratou, C.; Smith, A.; Arrii-Clacens S.; Clacens, J.M.; Rossignol, S. (2010) Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Ceram. Soc. 30 [7], 1641-1648. https://doi.org/10.1016/j.jeurceramsoc.2010.01.014

Prud'homme, E.; Michaud, P.; Joussein, E.; Peyratou, C.; Smith, A.; Rossignol, S. (2011) In situ inorganic foams prepared from various clays at low temperature. Appl. Clay Sci. 51 [1-2], 15-22. https://doi.org/10.1016/j.clay.2010.10.016

Bernal, S.A.; Rodríguez, E.D.; Mejía de Gutiérrez, R.; Provis, J.L. (2015) Performance at high temperature of alkali-activated slag pastes produced with silica fume and rice husk ash based activators. Mater. Construcc. 65 [318], e049. https://doi.org/10.3989/mc.2015.03114

Torres-Carrasco M.; Puertas, F. (2015) Waste glass in the geopolymer preparation. Mechanical and microstructural characterisation. J. Clean. Prod., 90, 397-408. https://doi.org/10.1016/j.jclepro.2014.11.074

Torres-Carrasco, M.; Rodríguez-Puertas, C.; Alonso, M.; Puertas, F. (2015) Alkali activated slag cements using waste glass as alternative activators. Rheological behaviour. Boletín la Soc. Espa-ola Cerámica y Vidr. 54 [2], 45-57. https://doi.org/10.1016/j.bsecv.2015.03.004

Badanoiu, A.I.; Al Saadi, T.H.; Stoleriu, S.; Voicu, G. (2015) Preparation and characterization of foamed geopolymers from waste glass and red mud. Constr. Build. Mater. 84, 284-293. https://doi.org/10.1016/j.conbuildmat.2015.03.004

Tchakouté, H.K.; Cru_scher, C.H.; Kong, S.; Kamseu, E.; Leonelli, C. (2016) Geopolymer binders from metakaolin using sodium waterglass from waste glass and rice husk ash as alternative activators: A comparative study. Constr. Build. Mater. 114, 276-289. https://doi.org/10.1016/j.conbuildmat.2016.03.184

Autef, A.; Joussein, E.; Gasgnier, G.;Rossignol, S. (2012) Role of the silica source on the geopolymerization rate. J. Non. Cryst. Solids. 358 [21], 2886-2893. https://doi.org/10.1016/j.jnoncrysol.2012.07.015

Tawfik, A.F.; El-raoof, A.; Katsuki, H.; Mackenzie, K.J. D.; Komarneni, S. (2016) K-Based Geopolymer from metakaolin : roles of K/Al ratio and water or steam Curing at different temperatures. Mater. Construcc. 66 [322], e081. https://doi.org/10.3989/mc.2016.03115

Ahmed, Y.M.; Ewais, E.; Zaki, Z. (2008) Production of porous silica by the combustion of rice husk ash for tundish lining. J. Univ. Sci. Technol. Beijing, Miner. Metall. Mater. 15 [3], 307-313. https://doi.org/10.1016/s1005-8850(08)60058-4

Sun, L.; Gong, K. (2001) Silicon-Based Materials from Rice Husks and Their Applications. Ind. Eng. Chem. Res. 40 [25], 5861-5877. https://doi.org/10.1021/ie010284b

Krishnarao, R.; Subrahmanyam, J.; Jagadish Kumar, T. (2001) Studies on the formation of black particles in rice husk silica ash. J. Eur. Ceram. Soc. 21 [1] 99-104. https://doi.org/10.1016/S0955-2219(00)00170-9

Hwang C.L.; Huynh, T.P. (2015) Investigation into the use of unground rice husk ash to produce eco-friendly construction bricks. Constr. Build. Mater. 93, 335-341. https://doi.org/10.1016/j.conbuildmat.2015.04.061

FAO (2013) Rice Market Monitor, Food Agric. Organ. United Nations. 16 (4), 1-38.

USA Rice Federation. 201. Facts. [Online]. Available: http://www.usarice.com/

DANE. (2015) Boletín Técnico. Available: http://www.dane.gov.co/files/investigaciones/boletines/arroz/bol_arroz_Isem15.pdf?phpMyAdmin=a9ticq8rv198vhk5e8cck52r11

Wang, H.; Li, H.; Yan, F. (2005) Reduction in wear of metakaolinite-based geopolymer composite through filling of PTFE. Wear. 258 [10], 1562-1566. https://doi.org/10.1016/j.wear.2004.11.001

Puertas, F.; Amat, T.; Vázquez, T. (2000) Comportamiento de morteros de cementos alcalinos reforzados con fibras acrílicas y de polipropileno. Mater. construcc. 50 [259], 69-84. https://doi.org/10.3989/mc.2000.v50.i259.400

Ranjbar, N.; Talebian, S.; Mehrali, M.; Kuenzel, C.; Simon, H.; Metselaar, C. and Zamin, M. (2016) Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Compos. Sci. Technol. 122, 73-81. https://doi.org/10.1016/j.compscitech.2015.11.009

Yunsheng, Z.; Wei, S.; Zongjin, L.; Xiangming, Z.; Chungkong, C. (2008) Impact properties of geopolymer based extrudates incorporated with fly ash and PVA short fiber. Constr. Build. Mater. 22 [3] pp. 370-383. https://doi.org/10.1016/j.conbuildmat.2006.08.006

Musil, S.; Kutyla, G.; Kriven, W.M. (2013) The effect of basalt chopped fiber reinforcement on the mechanical properties of potassium based geopolymer. Ceram. Eng. Sci. Proceed. 33 [10], 31-42.

Dias D.P.;Thaumaturgo, C. (2005) Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cem. Concr. Compos. 27 [1], 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044

Giancaspro, J.; Papakonstantinou, C.G.;Balaguru, P.N. (2010) Flexural Response of Inorganic Hybrid Composites With E-Glass and Carbon Fibers. J. Eng. Mater. Technol. 132 [2], 021005. https://doi.org/10.1115/1.4000670

Puertas F. ; Gil-Maroto, A. (2006) Alkali-activated slag mortars reinforced with ar glassfibre: Performance and properties. Mater. Constr. 56 [283], 79-90. https://doi.org/10.3989/mc.2006.v56.i283.10

Lin, T.; Jia, D.; Wang, M.; He, P.G.; Liang, D. (2009) Effects of fibre content on mechanical properties and fracture behaviour of short carbon fibre reinforced geopolymer matrix composites. Bull. Mater. Sci. 32 [1], 77-81. https://doi.org/10.1007/s12034-009-0011-2

Alcaide, J.S.; Alcocel, E.G. (2007) Carbon fibre-reinforced, alkali-activated slag mortars. Mater. Constr. 57 [288], 33-48.

Bernal, S.; Bejarano, J.; Garzón, C.; Mejía de Gutierrez, R.; Delvasto, S.; Rodríguez, E. (2012) Performance of refractory aluminosilicate particle/fiber-reinforced geopolymer composites. Compos. Part B Eng. 43 [4], 1919-1928. https://doi.org/10.1016/j.compositesb.2012.02.027

Silva F.J.;Thaumaturgo, C. (2003) Fibre reinforcement and fracture response in geopolymeric mortars. Fatigue Fract. Eng. Mater. Struct. 26 [2], 167-172. https://doi.org/10.1046/j.1460-2695.2003.00625.x

Bernal, S.; Mejía de Gutierrez, R.; Delvasto, S.; Rodríguez, E. (2010) Performance of an alkali-activated slag concrete reinforced with steel fibers. Constr. Build. Mater. 24 [2], 208-214. https://doi.org/10.1016/j.conbuildmat.2007.10.027

He, P.; Jia, D.; Lin, T.; Wang, M.; Zhao, Y. (2010) Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceram. Int. 36 [4], 1447-1453. https://doi.org/10.1016/j.ceramint.2010.02.012

Kamseu, E.; Rizzuti, A.; Leonelli, C.; Perera, D. (2010) Enhanced thermal stability in K2O-metakaolin-based geopolymer concretes by Al2O3 and SiO2 fillers addition. J. Mater. Sci. 45 [7], 1715-1724. https://doi.org/10.1007/s10853-009-4108-1

Phair, J.W.; Van Deventer, J.; Smith, J.D. (2000) Mechanism of Polysialation in the Incorporation of Zirconia into Fly Ash-Based Geopolymers. Ind. Eng. Chem. Res. 39 [8], 2925-2934. https://doi.org/10.1021/ie990929w

Tie-song, L.; De-chang, J.; Pei-gang, H.; Mei-rong, W. (2009) Thermal-mechanical properties of short carbon fiber reinforced geopolymer matrix composites subjected to thermal load. J. Cent. South Univ. Technol. 16 [6], 881-886. https://doi.org/10.1007/s11771-009-0146-8

Kuenzel, C.; Li, L.; Vandeperre, L.; Boccaccini, A.; Cheeseman, C. (2014) Influence of sand on the mechanical properties of metakaolin geopolymers. Constr. Build. Mater. 66, 442-446. https://doi.org/10.1016/j.conbuildmat.2014.05.058

Duxson, P.; Lukey, G.C. and Deventer, J. (2007) Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C. J. Mater. Sci. 42 [9], 3044-3054. https://doi.org/10.1007/s10853-006-0535-4

He, P.; Yang, Z.; Yang, J.; Duan, X.; Jia, D.; Wang, S.; Zhao, Y.; Wang, Y.; Zhang, P. (2015) Preparation of fully stabilized cubic-leucite composite through heat-treating Cs-substituted K-geopolymer composite at high temperatures. Compos. Sci. Technol. 107, 44-53. https://doi.org/10.1016/j.compscitech.2014.11.009

American Society for Testing & Materials. (2013) C1341 Standard Test Method for Flexural Properties of Continuous Fiber-Reinforced Advanced Ceramic Composites. 56. Parker, W.; Jenkins, R.; Butler, C.; Abbott, J. (1961) A Flash Method of Determining thermal Diffusivity, Heat Capacity, and Thermal Conductivity. Appl. Phys. 32, 714-719. http://dx.doi.org/10.1063/1.1728417 https://doi.org/10.1063/1.1728417

Zhang, M.H.; Lastra, R.; Malhotra, V. (1996) Rice Husk Ash Paste and Concrete: some aspects of hydration and the microstructure of the interfacial zone between the aggregate and paste. Cem. Concr. Res. 26 [6], 963-977. https://doi.org/10.1016/0008-8846(96)00061-0

He, P.G.; Jia, D.; Wang, M.; Zhao, Y. (2010) Effect of cesium substitution on the thermal evolution and ceramics formation of potassium-based geopolymer. Ceram Int. 36 [8], 2395-2400. https://doi.org/10.1016/j.ceramint.2010.07.015

Masi, G.; Rickard W.; Bignozzi M.; Van Riessen, A. (2015) The effect of organic and inorganic fibres on the mechanical and thermal properties of aluminate activated geopolymers. Compos. Part B Eng. 76, 218-228. https://doi.org/10.1016/j.compositesb.2015.02.023

Zhang, H.Y.; Kodur, V.; Cao, L.; Qi, S. (2014) Fiber Reinforced Geopolymers for Fire Resistance Applications. Procedia Eng. 71, 153-158. https://doi.org/10.1016/j.proeng.2014.04.022

Karim, M.R.; Zain, M.F.; Jamil, M.; Lai, F.C. (2013) Fabrication of a non-cement binder using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Constr. Build. Mater. 49, 894-902. https://doi.org/10.1016/j.conbuildmat.2013.08.077

Luna-Galiano, Y.; Cornejo, A.; Leiva, C.; Vilches, L.; Fernández-Pereira, C. (2015) Properties of fly ash and metakaolín based geopolymer panels under fire resistance tests. Mater. Construcc. 65 [319], e059. https://doi.org/10.3989/mc.2015.06114

Lyon, R.; Balaguru, P.; Foden, A. (1997) Fire-resistant aluminosilicate composites. Fire Mater. 21, 67-73. https://doi.org/10.1002/(SICI)1099-1018(199703)21:2<67::AID-FAM596>3.0.CO;2-N

Martauz, P.; Janotka, I.; Strigác, J.; Bacauvcík, M. (2016) Fundamental properties of industrial hybrid cement : utilization in ready-mixed concretes and shrinkage-reducing applications. Mater. Construcc. 66 [322], e084. https://doi.org/10.3989/mc.2016.04615

Latella, B.A.; Perera, D.; Durce, D.; Mehrtens, E.G. and Davis, J. (2008) Mechanical properties of metakaolin-based geopolymers with molar ratios of Si/Al ≈ 2 and Na/Al ≈ 1," J. Mater. Sci. 43 [8], 2693-2699. https://doi.org/10.1007/s10853-007-2412-1

Zuda, L.; Drchalová J.; Rovnaník, P.; Bayer, P.; Ker_ner, Z.; _erny_, R. (2010) Alkali-activated aluminosilicate composite with heat-resistant lightweight aggregates exposed to high temperatures: Mechanical and water transport properties. Cem. Concr. Compos. 32 [2], 157-163. https://doi.org/10.1016/j.cemconcomp.2009.11.009

Rickard, W.D.; Van Riessen, A.; Walls, P. (2010) Thermal Character of Geopolymers Synthesized from Class F Fly Ash Containing High Concentrations of Iron and Éø-Quartz. Int. J. Appl. Ceram. Technol. 7 [1], 81-88. https://doi.org/10.1111/j.1744-7402.2008.02328.x

Van Riessen A.; Rickard W.D.; Sanyan, J. (2009) Thermal properties of geopolymers, Geopolymers: Structures, Processing, Properties and Industrial Applications. ed Provis, J.L and Van Deventer, J.S.J., 315-342. Cmabridge, UK: Woodhead Publishing Limited.

Barbosa V.F. and MacKenzie, K.J. (2003) Synthesis and thermal behaviour of potassium sialate geopolymers. Mater. Lett. 57 [9-10], 1477-1482. https://doi.org/10.1016/S0167-577X(02)01009-1

Bell, J.L.; Driemeyer, P.E.; Kriven, W.M. (2009) Formation of Ceramics from Metakaolin-Based Geopolymers. Part II: K-Based Geopolymer. J. Am. Ceram. Soc. 92 [3], 607-615. https://doi.org/10.1111/j.1551-2916.2008.02922.x

Duxson, P.; Lukey, G.C.; Van Deventer, J.S.J. (2006) Thermal evolution of metakaolin geopolymers: Part 1 - Physical evolution. J. Non. Cryst. Solids. 352 [52-54], 5541-5555. https://doi.org/10.1016/j.jnoncrysol.2006.09.019

Jonker, A.; McCrindle, R.I.; Van der Merwe, M. (2009) Insulating Refractory Materials from Inorganic waste Sources. The Refractories Engineer. 14-19. Available in http://www.irengineers.co.uk

Kamseu, E.B.; Ceron, H.; Tobias, E.; Leonelli, M.C.; Bignozzi, A.; Muscio, A.; Libbra, A. (2011) Insulating behavior of metakaolin-based geopolymer materials assess with heat flux meter and laser flash techniques. J. Therm. Anal. Calorim. 108 [3], 1189-1199. https://doi.org/10.1007/s10973-011-1798-9

Duxson, P.; Lukey, G.C. and Van Deventer, J.S.J. (2006) Evolution of gel structure during thermal processing of Na-geopolymer gels. Langmuir. 22 [21], 8750-8757, Oct. https://doi.org/10.1021/la0604026 PMid:17014113

Kamseu, E.; Nait-Ali, B.; Bignozzi, M.C.; Leonelli, C.; Rossignol, S. and Smith, D.S. (2012) Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements. J. Eur. Ceram. Soc. 32 [8], 1593-1603. https://doi.org/10.1016/j.jeurceramsoc.2011.12.030

CTE, Catálogo de elementos constructivos. Código técnico de la edificación. Madrid, ESPAÑA, 2010. Avalaible in http://www.codigotecnico.org/images/stories/pdf/aplicaciones/nCatalog_infoEConstr/CAT-EC-v06.3_marzo_10.pdf

Zhang, Y.; Lv, M.; Chen, D. and Wu, J. (2007) Leucite crystallization kinetics with kalsilite as a transition phase," Mater. Lett. 61 [14-15], 2978-2981. https://doi.org/10.1016/j.matlet.2006.10.057




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es