Materiales de Construcción, Vol 67, No 327 (2017)

Evaluation of bio-materials’ rejuvenating effect on binders for high-reclaimed asphalt content mixtures

A. Jiménez del Barco-Carrión, M. Pérez-Martínez, A. Themeli, D. Lo Presti, P. Marsac, S. Pouget, F. Hammoum, E. Chailleux, G. D. Airey



The interest in using bio-materials in pavement engineering has grown significantly over the last decades due to environmental concerns about the use of non-recoverable natural resources. In this paper, bio-materials are used together with Reclaimed Asphalt (RA) to restore some of the properties of the aged bitumen present in mixtures with high RA content. For this purpose, two bio-materials are studied and compared to conventional and polymer modified bitumens. Blends of these materials with RA bitumen were produced and studied to simulate a 50% RA mixture. The rejuvenating effect of the two bio-materials on RA has been assessed and compared with the effect of the conventional binders. Apparent Molecular Weight Distribution of the samples (obtained by the ?-method) and different rheological parameters were used for this purpose. Results revealed the power of bio-materials to rejuvenate RA bitumen, showing their capability to be used as fresh binders in high-RA content mixtures.


Bio-material; Reclaimed asphalt; High content; Rejuvenation; Rheology

Full Text:



Peralta, J.; Raouf, M.A.; Tang, S.; Williams, R.C. (2012) Bio-Renewable Asphalt Modifiers and Asphalt Substitutes. Sustain. Bioenergy Bioprod. Green Energy Technol. London: Springer-Verlag London Limited 2012, pp 89–115.

Airey, G.D.; Mohammed, M.H.; Fichter, C. (2008) Rheological characteristics of synthetic road binders. Fuel. 87, 1763–1775.

Raouf, M.A.; Williams, C.R. (2010) General Rheological Properties of Fractionated Switchgrass Bio-Oil as a Pavement Material. Road Mater. Pavement Des. 11, 325–353.

Xue, Y.; Wu, S.; Cai, J.; Zhou, M.; Zha, J. (2014) Effects of two biomass ashes on asphalt binder: Dynamic shear rheological characteristic analysis. Constr. Build.Mater. 56,7–15.

Gong, M.; Yang, J.; Zhang, J.; Zhu, H.; Tong, T. (2016) Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Constr. Build. Mater. 105, 35–45.

Aflaki, S.; Hajikarimi, P.; Fini, E.H.; Zada, B. (2014) Comparing Effects of Biobinder with Other Asphalt Modifiers on Low-Temperature Characteristics of Asphalt J. Mater. Civ. Eng. 26, 429–439.

Mills-Beale, J.; You, Z.; Fini, E.; Zada, B.; Lee, C.H.; Yap,

Y.K. (2014) Aging Influence on Rheology Properties of

Petroleum-Based Asphalt Modified with Bio-Binder. J.

Mater. Civ. Eng. 26, 358–366.


Fini, E.H.; Al-Qadi, I.L.; You, Z.; Zada, B.; Mills-Beale, J. (2012) Partial replacement of asphalt binder with bio-binder: characterisation and modification. Int. J. Pavement. Eng. 13, 515–522.

Airey, G.D.; Mohammed, M.H. (2008) Rheological properties of polyacrylates used as synthetic road binders. Rheol. Acta. 47, 751–763.

Chailleux, E.; Audo, M.; Bujoli, B.; Queffelec, C.; Legrand, J.; Lepine, O. (2012) Alternative Binder from Microalgae. Transp. Res. Circ. Number E-C165 Pap. from a Work. 7–14.

Raouf, M.A. (2010) Development of non-petroleum binders derived from fast pyrolysis bio-oils for use in flexible pavement. PhD Thesis, Iowa State University.

Pouget, S.; Loup, F. (2013) Thermo-mechanical behaviour of mixtures containing bio-binders. Road Mater. Pavement Des. 14, 212–226.

Hajj, E.Y.; Sebaaly, P.E.; Shrestha, R. (2009) Laboratory Evaluation of Mixes Containing Recycled Asphalt Pavement (RAP). Road Mater. Pavement Des. 10, 495–517.

Zaumanis, M.; Mallick, R.B.; Frank, R. (2014) Evaluation of different recycling agents for restoring aged asphalt binder and performance of 100 % recycled asphalt. Mater. Struct.

Themeli, A.; Chailleux, E.; Farcas, F.; Chazallon, C.; Migault, B.

(2015) Molecular weight distribution of asphaltic paving binders from phase-angle measurements. Road Mater. Pavement Des. 16, 228–244.

EN 12697-4 (2005): Bituminous mixtures — Test methods for hot mix asphalt — Part 4: Bitumen recovery: Fractionating column. European Standards.

Jiménez Barco-Carrión, A.; García-Travé, G.; Moreno- Navarro, F.; Martínez-Montes, G.; Rubio-Gámez, M.C. (2016) Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures. Mater. Construcc. 66.

Antonie Jean, P.; Marcilloux, J. (2008): Composition comprenant une fraction organique pour la realisation d’une couche d’un revetement de voie ou de batiment. France: Institut National de la Propriete Industrielle.

Jiménez del Barco Carrión, A.; Lo Presti, D.; Airey GD (2015) Binder design of high RAP content hot and warm asphalt mixture wearing courses. Road Mater. Pavement Des. 1–15.

Lo Presti, D.; Jiménez del Barco Carrión, A.; Airey, G.; Hajj, E. (2016) Towards 100% recycling of reclaimed asphalt in road surface courses: binder design methodology and case studies. J. Clean. Prod. 131, 43–51.

NCHRP (2001): Report 452 Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method: Technician’s Manual. Washington, D.C.

EN 1426 (2007): Bitumen and bituminous binders —

Determination of needle penetration. European Standards, p 18.

EN 1427 (2007): Bitumen and bituminous binders - Determination of the softening point — Ring and Ball method. European Standards, p 18.

Airey, G.D. (2002) Use of Black Diagrams to Identify Inconsistencies in Rheological Data Use of Black Diagrams to Identify Inconsistencies in Rheological Data. Road Mater. Pavement Des. 3, 403–424.

Chailleux, E.; Ramond, G.; Such, C.; de La Roche, C. (2006) A mathematical-based master-curve construction method applied to complex modulus of bituminous materials. Road Mater. Pavement Des. 7, 75–92.

Rowe, G.M.; Barry, J.; Crawford, K. (2015) Evaluation of a 100 % Rap Recycling Project in Fort Wayne, Indiana. 8th RILEM Int. Symp. Test Charact. Sustain. Innov. Bitum. Mater. Springer, pp 941–951.

Tuminello, W.H.; Cudré-Mauroux, N. (1991) Determining molecular weight distributions from viscosity versus shear rate flow curves. Polym. Eng. Sci. 31, 1496–1507.

Wu, S. (1988) Characterization of Polymer Molecular Weight Distribution by Transient Viscoelasticity: Polytetrafluoroethylenes. Polym. Eng. Sci. 28, 6.

Lesueur, D. (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen

modification. Adv. Colloid. Interface Sci. 145, 42–82.

Tuminello, W.H. (1986) Molecular weight and molecular weight distribution from dynamic measurements of polymer melts. Polym. Eng. Sci. 26, 1339–1347.

Zanzotto, L.; Stastna, J.; Ho, S. (1999) Molecular weight distribution of regular asphalts from dynamic material functions. Mater. Struct. 32, 224–229.

Such, C. (1982) Etude de la structure du bitume – analyse du comportement visqueux. Rapport interne CHG01189. .

Such, C. (1983) Analyse du comportement visqueux des bitumes. Bulletin de liaison des laboratoires des ponts et chaussées 127. .

Olard, F. (2003) Comportement thermomécanique des enrobés bitumineux à basse températures. Relations entre les propriétés du liant et de l’enrobé. INSA Lyon.

Yusoff, N.I. (2012) Modelling the Linear Viscoelastic Rheological Properties of Bituminous Binders. Nottingham University.

Yusoff, N.I.; Monieur, D.; Airey, G. (2010) The 2S2P1D: An excellent linear viscoelastic model. Unimas e-Journal Civ Eng. .

Mullins, O.C. (2011) The asphaltenes. Annu Rev Anal Chem. 4: 393–418.

Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 Spain (CC-by).

Contact us

Technical support