Evaluation of bituminous sub-ballast manufactured at low temperatures as an alternative for the construction of more sustainable railway structures

Authors

  • L. Pirozzolo Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0003-1722-4046
  • M. Sol-Sánchez Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0003-3756-7556
  • F. Moreno-Navarro Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0001-6758-8695
  • G. Martínez-Montes Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0003-0677-8318
  • M. C. Rubio-Gámez Laboratory of Construction Engineering (LabIC.UGR), Department of Construction Engineering (ICPI), School of Civil Engineering (ETSICCP), University of Granada https://orcid.org/0000-0002-1874-5129

DOI:

https://doi.org/10.3989/mc.2017.04816

Keywords:

Limestone, Temperature, Deformation, Mechanical properties

Abstract


Hot bituminous mixtures are becoming widely used in modern railway tracks in the sub-ballast layer. The reason is that these materials allow for both an increase in bearing capacity and greater protection of the substructure respect the traditional granular sub-ballast. Despite these advantages, the fact that these materials are manufactured at a temperature of 160°C means that their application can lead to an important increase in construction costs, pollution and energy consumption. This paper aims to study the possibility of using WMA manufactured at lower temperatures, as bituminous sub-ballast, in order to save energy and reduce emissions throughout the production process, as well as diminish the global costs of this layer. To this end, this study focuses on a comparison of the mechanical behaviour of warm and hot bituminous mixtures as sub-ballast under various loading conditions. The results indicate that WMA offers mechanical behaviour that is comparable to conventional HMA.

Downloads

Download data is not yet available.

References

Selig, E.T.; Waters, J.M. (1994) Track technology and substructure management Thomas Telford, London.

Teixeira, P.F.; López-Pita, A.; Casas-Esplugas, C.; Bachiller, A.; and Robusté, F. (2006) Improvements in highspeed ballasted track design: Benefits of bituminous subballast layers. Transp. Res. Rec., 1943, 43–49. https://doi.org/10.3141/1943-06

Teixeira, P.F.; Ferreira, P.A.; López Pita, A.; Casas, C.; Bachiller, A. (2009) The use of bituminous sub-ballast on future high-speed lines in Spain: Structural design and economical impact. IJR International Journal of Railway, 2, 1–7.

Rose, J.G.; Teixeira, P.F.; Veit, P. (2011) International Design Practices, Applications, and Performances of Asphalt /Bituminous Railway Trackbeds". GEORAIL, Paris, France.

Asphalt Institute (1998) HMA Trackbeds–Hot Mix Asphalt for Quality Railroad and Transit Trackbeds, Informational Series 137, 10 p.

Fang, M.; Rose, J.G.; West, R.C.; Qiu, Y.; (2011) Ai C. Comparative analysis on dynamic behavior of two HMA railway substructures. J Transp Res Board; 19(1): 26–34.

Sol-Sánchez, M.; Pirozzolo, L.; Moreno-Navarro, F.; Rubio-Gámez, M.C. (2015) Advanced characterisation of bituminous sub-ballast for its application in railway tracks: The influence of temperature. Construc. Build. Mat. 101 338–346. https://doi.org/10.1016/j.conbuildmat.2015.10.102

CENIT (2005) Estudio sobre la viabilidad de incorporar capas de sub-balasto con material bituminoso en las líneas de alta velocidad en Espa-a-Fase 2. 252 pp. Conf. Report.

Rose, J.G.; Bryson, L.S. (2009) Hot mix asphalt railway trackbeds: trackbed materials, performance evaluations, and significant implications. International Conference on Perpetual Pavements, Columbus, Ohio, USA.

Rose, J.G.; Teixeira, P.F. (2010) Ridgway NE. Utilization of asphalt/bituminous layers and coatings in railway trackbeds – a compendium of international applications. ASME Joint Rail Conf; 1:239–56. PMid:20065298

Jiménez del Barco-Carrión, A.; García-Travé, G.; Moreno- Navarro, F.; Martínez-Montes, G.; Rubio-Gámez, M.C. (2016) Comparison of the effect of recycled crumb rubber and polymer concentration on the performance of binders for asphalt mixtures. Mater. Construcc. 66 [323], e090. https://doi.org/10.3989/mc.2016.08815

López-López, E.; Vega-Zamanillo, A.; Calzada-Pérez, M.A.; Taborga-Sedano, M.A. (2015) Use of bottom ash from thermal power plant and lime as filler in bituminous mixtures. Mater. Construcc. 65 [318], e051. https://doi.org/10.3989/mc.2015.01614

Alonso, A.; Tejeda, E.; Moreno, F.; Rubio, M., & Medel, E. (2013) A comparative study of natural zeolite and synthetic zeolite as an additive in warm asphalt mixes. Mater. Construcc, 63(310): 195–217.

Rubio-Gámez, M.C.; Martínez, G.; Baena, L.; Moreno, F. (2012) Warm mix asphalt: an overview. J. Clean. Produc. 24, 76–84. https://doi.org/10.1016/j.jclepro.2011.11.053

You, Z.; Goh, S.W. (2008) Laboratory evaluation of warm mix asphalt: a preliminary study. International Journal of Pavement Research and Technology 1 (1), 34e40.

Zaumanis, M. (2010) Warm mix asphalt investigation. Master of science thesis. Kgs.Lyngby: Technical University of Denmark in cooperation with the Danish Road Institute, Department of Civil Engineering.

Olard, F.; Noan, C. (2008) Low energy asphalts. Routes roads 336/337. PIARC (World Road Association). p. 131–45.

EAPA. (2010) The use of warm mix asphalt – EAPA position paper. Brussels: European Asphalt Pavement Association.

Al-Rawashdeh, A.S. (2008) Performance Assessment of Warm Mix Asphalt (WMA) Pavements. PhD Thesis, Rus College of Engineering and Technology, Ohio University, Athens, USA.

Chowdhury, A.; Button, J.W. (2008) A Review of Warm Mix Asphalt. Texas Transportation Institute e Technical Report 473700-00080-1 College Station, USA.

Rohith, N.; Ranjitha, J. (2013) A Study On Marshall Stability Properties Of Warm Mix Asphalt Using Zycotherm A Chemical Additive. International Journal of Engineering Research & Technology (IJERT). ISSN: 2278–0181. Vol. 2 Issue 7, July – 2013.

Pérez-Lepe, A.; Martínez-Boza, F.J.; Gallegos, C.; González, O.; Mu-oz, M.E.; Santamaría A. (2003) Influence of the processing conditions on the rheological behaviour of polymer-modified bitumen. Fuel, 82, 1339–1348. https://doi.org/10.1016/S0016-2361(03)00065-6

Hafeez, I.; Hussain, J.; Riaz, K.; Khitab, A.; Hussain, S.; Zaidi, B.; Farooqi, U.; Hayat, A.; Ahmed, I.; Asif, A. (2013) Influence of time and temperature on asphalt rheological properties. Life Sci. J., 10, 894–898. http://www.lifesciencesite.com/lsj/life1012s/146_22330life1012s_894_898.pdf.

Moreno-Navarro, F.; Sol-Sánchez, M.; Rubio-Gámez, M.C. (2015) The effect of polymer modified binders on the long-term performance of bituminous mixtures: the influence of temperature. Mat. Des. 78, pp. 5–11. https://doi.org/10.1016/j.matdes.2015.04.018

Rose, J.G.; Li, D.; Walker, L.A. (2002) Tests and evaluations of in-service asphalt trackbeds. American Railway Engineering and Maintenance-of-Way Association, Annual Conference & Exposition, Washington, D.C., USA.

Minhoto, M.J.C.; Pais, J.C.; Pereira, P.A.A. (2008) The temperature effect on the reflective cracking of asphalt overlays. Mat. Pav. Des. 9, 615-632. https://doi.org/10.1080/14680629.2008.9690141

Parson, R.; Rahman, A.; Han, J. (2012) Properties of fouled railroad ballast (Phase 1). Mid-America Transportation Center. Final Report 25-1121-0001-465.

Hurley, G.; Prowell, B. (2006) Evaluation of Potential Processes for Use in Warm Mix Asphalt. Alabama : National Center for Asphalt Technology, Auburn University. NCAT report Nr.06-02.

Sanchez-Alonso, E.; Vega-Zamanillo, A.; Castro-Fresno, D.; Del Rio-Prat, M. (2011) Evaluation of compactability and mechanical properties of bituminous mixes with warm additives. Constr Build Mater; 25:2304–11. https://doi.org/10.1016/j.conbuildmat.2010.11.024

Bennert, T.; Maher, A.; Sauber, R. (2011) Influence of production temperature and aggregate moisture content on the performance of warm mix asphalt (WMA). In: Nineteenth annual meeting of the transportation research board, Washington, DC, USA.

Rose, J.G. (2014) Maintaining adequate trackbed structural support- An important railway infrastructure issue. Seminar at University of Illinois at Urbana-Champaign, USA.

Spanish Standard for Subballast, PF-7 (2006) Pliego de Prescripciones Técnicas Generales de Materiales Ferroviarios PF-7, Subbalasto. Servicio de publicaciones del Ministerio de Fomento, Madrid.

Policicchio, F. (2008) Lineamenti di Infrastrutture Ferroviarie. Firenze University Press.

Published

2017-09-30

How to Cite

Pirozzolo, L., Sol-Sánchez, M., Moreno-Navarro, F., Martínez-Montes, G., & Rubio-Gámez, M. C. (2017). Evaluation of bituminous sub-ballast manufactured at low temperatures as an alternative for the construction of more sustainable railway structures. Materiales De Construcción, 67(327), e128. https://doi.org/10.3989/mc.2017.04816

Issue

Section

Research Articles

Most read articles by the same author(s)