Materiales de Construcción, Vol 67, No 328 (2017)

Properties of geopolymer binders prepared from milled pond ash


https://doi.org/10.3989/mc.2017.07716

J. Temuujin
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Mongolia
orcid http://orcid.org/0000-0003-0930-7271

A. Minjigmaa
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Mongolia
orcid http://orcid.org/0000-0002-4468-7874

U. Bayarzul
Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, Mongolia
orcid http://orcid.org/0000-0002-3995-3875

D. S. Kim
Korea Institute of Ceramic Engineering and Technology, Korea, Republic of
orcid http://orcid.org/0000-0003-4722-2738

S-Ho Lee
Korea Institute of Ceramic Engineering and Technology, Korea, Republic of
orcid http://orcid.org/0000-0001-6208-0155

H. J. Lee
Korea Institute of Ceramic Engineering and Technology, Korea, Republic of
orcid http://orcid.org/0000-0001-7369-5630

C. H. Ruescher
Institute of Mineralogy, Leibniz University of Hannover, Germany
orcid http://orcid.org/0000-0003-1471-7910

K. J.D. MacKenzie
MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, New Zealand
orcid http://orcid.org/0000-0003-3460-6708

Abstract


Alkali-activated materials were prepared from pond ash from the Darkhan city (Mongolia) thermal power station. This ash contains about 60 wt % X-ray amorphous material in addition to quartz, mullite, hematite and magnesioferrite, and presents significant storage problems since it is accumulating in large amounts and is a hazardous waste, containing 90–100 ppm of the heavy metals As, Pb and Cr, and about 800 ppm Sr. Alkali-activated materials synthesized from the as-received pond ash achieved compressive strengths of only 3.25 MPa. Reduction of the particle size by mechanical milling for up to 30 min progressively increases the compressive strength of the resulting alkali-activated geopolymer up to 15.4 MPa. Leaching tests indicate that the combination of milling and alkali treatment does not cause the release of the hazardous heavy metals from the product, making it suitable for construction applications.

Keywords


Pond ash; Grinding; Alkali-activated cement; Compressive strength; Microstructure

Full Text:


HTML PDF XML

References


Blissett, R.S.; Rowson, N.A. (2012) A review of the multicomponent utilisation of coal fly ash. Fuel, 97, 1-23. https://doi.org/10.1016/j.fuel.2012.03.024

Jha, V.K.; Matsuda, M.; Miyake, M. (2008) Resource recovery from coal fly ash waste: an overview study. J. Ceram. Soc. Japan. 116, 167-175. https://doi.org/10.2109/jcersj2.116.167

Ahmaruzzaman, M. (2010) A review on the utilization of fly ash. Progress. Energy. Combust. Sci. 36, 327-363. https://doi.org/10.1016/j.pecs.2009.11.003

Zacco, A.; Borgese, L.; Gianoncelli, A.; Struis, R.P.W.J.; Depero, L.E.; Bontempi, E. (2014) Review of fly ash inertisation treatments and recycling. Environment. Chem. Lett. 12, 153-175. https://doi.org/10.1007/s10311-014-0454-6

Erol, M.; Genc, A.; Ovecoglu, M.L.; Yucelen, E.; Kucukbayrak, S.; Taptok, Y. (2000) Characterization of a glass-ceramic produced from thermal power plant fly ashes. J. Eur. Ceram. Soc. 20, 2209-2214. https://doi.org/10.1016/S0955-2219(00)00099-6

Provis, J.L.; van Deventer, J.S.J., Ed. (2014) Alkali Activated Materials, State-of-the-Art Report. RILEM TC 224-AAM, London, Springer, 388p, 2014. https://doi.org/10.1007/978-94-007-7672-2

Gourley, J.T. (2014) Geopolymers in Australia. J. Aus. Ceram. Soc. 50, 102 110. http://www.austceram.com/JAC-2014-1/ACS-Journal-2014-v1-102

Temuujin, J.; Minjigmaa, A.; Bayarzul, U.; Zolzaya, Ts.; Davaabal, B.; Amgalan, J. (2015) Fundamentals of geopolymers and related alkali activated materials. Mater. Sci. Forum, 803, 144-147. https://doi.org/10.4028/www.scientific.net/MSF.803.144

Chindaprasirt, P.; Jaturapitakkul, C.; Chalee, W.; Rattanasak, U. (2009) Comparative study on the characteristics of fly ash and bottom ash geopolymers. Waste Manage, 29, 539-543. https://doi.org/10.1016/j.wasman.2008.06.023 PMid:18715775

Chen, C.; Li, Q.; Shen, L.; Zhai, J. (2012) Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Environment. Techn. 33, 1313-1321. https://doi.org/10.1080/09593330.2011.626797 PMid:22856304

Lancellotti, I.; Ponzoni, C.; Barbieri, L.; Leonelli, C. (2013) Alkali activation processes for incinerator residues management. Waste Manage. 33, 1740-1749. https://doi.org/10.1016/j.wasman.2013.04.013 PMid:23756039

Tzanakos, K.; Mimilidou, A.; Anastasiadou, K.; Stratakis, A.; Gidarakos, E. (2014) Solidification /stabilization of ash from medical waste incineration into geopolymers. Waste Manage. 34, 1823-1828. https://doi.org/10.1016/j.wasman.2014.03.021 PMid:24785364

McCarthy, M.J.; Jones, M.R.; Zheng, L.; Robl, T.L.; Groppo, J.G. (2013) Characterising long-term wet-stored fly ash following carbon and particle size separation. Fuel, 111, 430-441. https://doi.org/10.1016/j.fuel.2013.02.048

Lee, S.; Jou, H.T.; Chon, C.M.; Kang, N.H.; Cho, S.B. (2013) Developing and assessing geopolymers from Seochun pond ash with a range of compositional ratios. J. Korean Ceram. Soc. 50, 134-141. https://doi.org/10.4191/kcers.2013.50.2.134

Lee, S.; Jou, H.T.; van Riessen, A.; Rickard, W.D.A.; Chon, C.M.; Kang, N.H. (2014) Three-dimensional quantification of pore structure in coal ash-based geopolymer using conventional electron tomography. Construct. Build. Mater. 52, 221-226. https://doi.org/10.1016/j.conbuildmat.2013.10.072

Ranganath, V.R.; Bhattacharjee, B.; Krishnamoorth, S. (1998) Influence of size fraction of ponded ash on its pozzolanic activity. Cement. Concrete Res. 28, 749-761, https://doi.org/10.1016/S0008-8846(98)00036-2

Lee, S.J.; Cho, H.C.; Kwon, J.H. (2012) Beneficiation of coal pond ash by physical separation techniques. J. Environment. Manage. 104, 77-84. https://doi.org/10.1016/j.jenvman.2012.03.034 PMid:22484657

Bayarzul, U.; Temuujin, J.; Minjigmaa, A.; Bekhbaatar, A.; Battsetseg, B.; Mapiravana, J.; Dlamini, M. (2014) Comparative study of morphology of various fly ashes and pond ashes from different thermal power stations in Mongolia. Proceed. Mongol. Acad. Sci. 54, 5-10. https://doi.org/10.5564/pmas.v54i4.621

Temuujin, J.; Williams, R.P.; van Riessen, A. (2009) Effect of mechanical activation of fly ash on the properties of geopolymer cured at ambient temperature. J. Mater. Process. Techn. 209, 5276-5280. https://doi.org/10.1016/j.jmatprotec.2009.03.016

Kumar, R.; Kumar, S.; Mehrotra, S.P. (2007) Towards sustainable solutions for fly ash through mechanical activation. Res. Conservation. Recycl. 52, 157-179. https://doi.org/10.1016/j.resconrec.2007.06.007

Mucsi, G.; Kumar, S.; Csoke, B.; Kumar, R.; Molnar, Z.; Racz, A.; M·dai, F.; Debreczeni, A. (2015) Control of geopolymer properties by grinding of land filled fly ash. Inter. J. Miner. Process. 143, 50-58. https://doi.org/10.1016/j.minpro.2015.08.010

Nikolic, V.; Komljenovic, M.; Marjanovic, N.; Bascarevic, Z.; Petrovic, R. (2014) Lead immobilization by geopolymers based on mechanically activated fly ash. Ceram. Inter. 40, 8479- 8488. https://doi.org/10.1016/j.ceramint.2014.01.059

Temuujin, J.; Minjigmaa, A.; Davaabal, B.; Bayarzul, U.; Ankhtuya, A.; Jadambaa, Ts.; MacKenzie, K.J.D. (2014) Utilization of radioactive high-calcium Mongolian flyash for the preparation of alkali-activated geopolymers for safe use as construction materials. Ceram. Inter. 40, 16475-16483. https://doi.org/10.1016/j.ceramint.2014.07.157

Hardjito, D. (2005) Studies on Fly Ash-Based Geopolymer Concrete. PhD thesis, Curtin University of Technology, Australia, 2005.

Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603-619. https://doi.org/10.1351/pac198557040603

Ruscher, C.H.; Mielcarek, E.M.; Wongpa, J.; Jaturapitakkul, C.; Jirasit, F.; Lohaus, L. (2010) Silicate, aluminosilicate and calcium silicate gels for building materials: chemical and mechanical properties during ageing. Eur. J. Miner. 23, 111-124. https://doi.org/10.1127/0935-1221/2010/0022-2070

Provis, J.L. (2009) Immobilization of toxic wastes in geopolymers. In Geopolymers Structure, Processing, Properties, Industrial Applications. Provis JL, van Deventer JSJ (Editors.) Woodhead, Cambridge, 423-442.

El-Eswed, B.I.; Yousef, R.I.; Alshaaer, M.; Hamadneh, I.; Al-Gharabli.; S.I, Khalili, F. (2015) Stabilization/ solidification of heavy metals in kaolin/zeolite based geopolymers. Inter. J. Miner. Proc. 137, 34-42. https://doi.org/10.1016/j.minpro.2015.03.002

Blackford, M.G.; Hanna, J.V.; Pike, K.J.; Vance, E.R.; Perera, D.S. (2007) Transmission Electron Microscopy and Nuclear Magnetic Resonance Studies of Geopolymers for Radioactive Waste Immobilization. J. Am. Ceram. Soc., 90 [4], 1193-1199. https://doi.org/10.1111/j.1551-2916.2007.01532.x




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es