Materiales de Construcción, Vol 67, No 328 (2017)

Preparation of β-belite using liquid alkali silicates


https://doi.org/10.3989/mc.2017.10816

P. Koutník
Unipetrol Centre for Research and Education, Czech Republic
orcid http://orcid.org/0000-0002-3486-5577

Abstract


The aim of this study is the preparation of β-belite by a solid-state reaction using powdered limestone, amorphous silica and liquid alkali silicates. The raw materials were blended, the mixtures were agglomerated and then burnt. The resulting samples were characterized by X-ray diffraction analysis and scanning electron microscopy. Free lime content in the β-belite samples was also determined. The effects of CaO/SiO2 ratio (1.6–2.1), burning temperature (800–1400 °C), utilization of different raw materials (silica fume, synthetic silica, potassium silicate, sodium silicate, potassium hydroxide) and burning time (0.5–16 h) on free lime content and mineralogical composition were investigated. The purest ?-belite samples were prepared from a mixture of powdered limestone, silica fume and liquid potassium silicate with a ratio CaO/SiO2 = 2 by burning at temperatures between 1100 and 1300 °C for more than 2 h. Decreasing of the CaO/SiO2 ratio led to rankinite formation and lower a burning temperature led to the formation of wollastonite.

Keywords


Dicalcium silicate; Alkali; Silica Fume; Limestone; X-ray Diffraction (XRD)

Full Text:


HTML PDF XML

References


Gartner, E. (2004) Industrially interesting approaches to "low CO2" cements. Cem. Concr. Res. 34 (9), 1489–1498. https://doi.org/10.1016/j.cemconres.2004.01.021

Schneider, M.; Romer, M.; Tschudin ,M.; Bolio, H. (2011) Sustainable cement production—present and future. Cem. Concr. Res. 41 (7), 642–650. https://doi.org/10.1016/j.cemconres.2011.03.019

Chatterjee, A.K. (1996) High belite cements—Present status and future technological options: Part I. Cem. Concr. Res. 26 (8), 1213 -1225. https://doi.org/10.1016/0008-8846(96)00099-3

Bensted, J. (1978) Gamma-dicalcium silicate and its hydraulicity. Cem. Concr. Res. 8 (1), 73–76. https://doi.org/10.1016/0008-8846(78)90059-5

Kriskova, L.; Pontikes, Y.; Zhang, F.; Cizer, Ö.; Jones, P.T.; Van Balen, K.; Blanpain, B. (2014) Influence of mechanical and chemical activation on the hydraulic properties of gamma dicalcium silicate. Cem. Concr. Res. 55, 59–68. https://doi.org/10.1016/j.cemconres.2013.10.004

Rodrigues, F.A. (2003) Synthesis of chemically and structurally modified dicalcium silicate. Cem. Concr. Res. 33 (6), 823–827. https://doi.org/10.1016/S0008-8846(02)01065-7

Kurdowski, W.; Duszak, S.; Trybalska, B. (1997) Belite produced by means of low-temperature synthesis. Cem. Concr. Res. 27 (1), 51–62. https://doi.org/10.1016/S0008-8846(96)00198-6

Kacimi, L.; Simon-Masseron ,A.; Salem, S.; Ghomari, A.; Derriche, Z. (2009) Synthesis of belite cement clinker of high hydraulic reactivity. Cem. Concr. Res. 39 (7), 559–565. https://doi.org/10.1016/j.cemconres.2009.02.004

Pimraksa, K.; Hanjitsuwan, S.; Chindaprasirt, P. (2009) Synthesis of belite cement from lignite fly ash. Ceram. Int. 35 (6), 2415–2425. https://doi.org/10.1016/j.ceramint.2009.02.006

Morsli, K.; De la Torre, A.G.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. (2009) Preparation and characterization of alkali-activated white belite cements. Mater. Construcc. 59 (294), 19–29.

Morsli, K.; De la Torre, A.G.; Stöber, S.; Cuberos, A.J.M.; Zahir, M.; Aranda, M.A.G. (2007) Quantitative Phase Analysis of Laboratory-Active Belite Clinkers by Synchrotron Powder Diffraction. J. Am. Ceram. Soc. 90 (10), 3205–3212. https://doi.org/10.1111/j.1551-2916.2007.01870.x

Chen, Y.L.; Lin, Ch.J.; Ko, M.S.; Lai ,Y.Ch.; Chang, J.E. (2011) Characterization of mortars from belite-rich clinkers produced from inorganic waste. Cem. Concr. Comp. 33 (2), 261–266. https://doi.org/10.1016/j.cemconcomp.2010.10.012

Zivica, V. (2000) Properties of blended sulfoaluminate belite cement. Constr. Build. Mater. 14 (8), 433–437. https://doi.org/10.1016/S0950-0618(00)00050-7

Glasser, F.P.; Zhang, L. (2001) High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem. Concr. Res. 31 (12), 1881–1886. https://doi.org/10.1016/S0008-8846(01)00649-4

Strigac J.; Palou M. T.; Kristin J.; Majling J. (2000) Morphology and chemical composition of minerals inside the phase assemblage C-C2S-C4A3 S -C4AF-CS relevant to sulphoaluminate belite cements. Ceramics-Silikáty 44 (1), 26–34.

Martín-Sedeno, M.C.; Cuberos ,A.J.M.; De la Torre, A.G.; Álvarez Pinazo, G.; Ordónez, L.M.; Gateshki, M.; Aranda, M.A.G. (2010) Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem. Concr. Res. 40 (3), 359–369. https://doi.org/10.1016/j.cemconres.2009.11.003

Tišlova, R.; Kozłowska, A.; Kozłowski, R.; Hughes, D. (2009) Porosity and specific surface area of Roman cement pastes. Cem. Concr. Res. 39 (10), 950–956. https://doi.org/10.1016/j.cemconres.2009.06.020

Hughes, D.C.; Jaglin, D.; Kozłowski, R.; Mucha, D. (2009) Roman cements — Belite cements calcined at low temperature. Cem. Concr. Res. 39 (2), 77–89. https://doi.org/10.1016/j.cemconres.2008.11.010

Gosselin, C.; Verges-Belmin, V.; Royer, A.; Martinet, G. (2009) Natural cement and monumental restoration. Mater. Struct. 42 (6), 749–763. https://doi.org/10.1617/s11527-008-9421-7

Starinieri, V.; Hughes, D.C.; Gosselin, C.; Wilk, D.; Bayer, K. (2013) Pre-hydration as a technique for the retardation of Roman cement mortars. Cem. Concr. Res. 46, 1–13. https://doi.org/10.1016/j.cemconres.2013.01.004

Weber, J.; Gadermayr, N.; Kozłowski, R.; Mucha, D.; Hughes, D.; Jaglin, D.; Schwarz, W. (2007) Microstructure and mineral composition of Roman cements produced at defined calcination conditions. Mater. Char. 58 (11–12), 1217–1228. https://doi.org/10.1016/j.matchar.2007.04.025

El-Didamony, H.; Khalil, Kh.A.; Ahmed, I.A.; Heikal, M. (2012) Preparation of β-dicalcium silicate (β-C2S) and calcium sulfoaluminate (C3A3 CS) phases using non-traditional nano materials. Constr. Build. Mater. 35 77–83. https://doi.org/10.1016/j.conbuildmat.2012.02.064

Ozturk, A.; Suyadal, Y.; Oguz, H. (2000) The formation of belite phase by using phosphogypsum and oil shale. Cem. Concr. Res. 30 (6), 967–971. https://doi.org/10.1016/S0008-8846(00)00262-3

Staněk, T.; Sulovsky, P. (2015) Active low-energy belite cement. Cem. Concr. Res. 68, 203–210. https://doi.org/10.1016/j.cemconres.2014.11.004

Gies, A.; Knofel ,D. (1986) Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cements. Cem. Concr. Res. 16 (3), 411 -422. https://doi.org/10.1016/0008-8846(86)90117-1

Rodrigues, F.A. (2003) Low-temperature synthesis of cements from rice hull ash. Cem. Concr. Res. 33 (10), 1525–1529. https://doi.org/10.1016/S0008-8846(03)00104-2

Mazouzi, W.; Kacimi, L.; Cyr M.; Clastres P. (2014) Properties of low temperature belite cements made from aluminosilicate wastes by hydrothermal method. Cem. Concr. Comp. 53, 170–177. https://doi.org/10.1016/j.cemconcomp.2014.07.001

Maheswaran, S.; Kalaiselvam, S.; Saravana Karthikeyan, S.K.S.; Kokila, C.; Palani, G.S. (2016) β-Belite cements (β-dicalcium silicate) obtained from calcined lime sludge and silica fume. Cem. Concr. Comp. 66, 57–65. https://doi.org/10.1016/j.cemconcomp.2015.11.008

Campillo, I.; Guerrero, A.; Dolado, J.S.; Porro, A.; Ibá-ez, J.A.;Go-i, S. (2007) Improvement of initial mechanical strength by nanoalumina in belite cements. Materials Letters 61 (8–9), 1889 1892. https://doi.org/10.1016/j.matlet.2006.07.150

Guerrero, A.; Go-i, S.; Macias, A.; Luxan, M.P. (2000) Effect of the starting fly ash on the microstructure and mechanical properties of fly ash–belite cement mortars. Cem. Concr. Res. 30 (4), 553–559. https://doi.org/10.1016/S0008-8846(00)00198-8

Kacimi ,L.; Cyr, M.; Clastres, P. (2010) Synthesis of α′L-C2S cement from fly-ash using the hydrothermal method at low temperature and atmospheric pressure. J. Hazard. Mater. 181 (1 -3), 593–601. https://doi.org/10.1016/j.jhazmat.2010.05.054 PMid:20541318

Singh, N.B. (2006) Hydrothermal synthesis of β-dicalcium silicate (β-Ca2SiO4). Progress in crystal growth and characterization of materials 52 (1–2) 77–83. https://doi.org/10.1016/j.pcrysgrow.2006.03.011

Link, T.; Bellmann, F.; Ludwig, H.M.; Ben Haha, M. (2015) Reactivity and phase composition of Ca2SiO4 binders made by annealing of alpha-dicalcium silicate hydrate. Cem. Concr. Res. 67, 131–137. https://doi.org/10.1016/j.cemconres.2014.08.009

Guerrero ,A.; Go-i, S.; Macias, A. (2000) Durability of new fly ash–belite cement mortars in sulfated and chloride medium. Cem. Concr. Res. 30 (8), 1231–1238. https://doi.org/10.1016/S0008-8846(00)00313-6

Guerrero, A.; Go-i, S.; Macias, A.; Luxan, M.P. (1999) Hydraulic activity and microstructural characterization of new fly ash–belite cements synthesized at different temperatures. J. Mater. Res. 14 (6), 2680–2687. https://doi.org/10.1557/JMR.1999.0359

Garbev, K.; Beuchle, G.; Schweike, U.; Merz, D.; Dregert, O.; Stemmermann P. (2014) Preparation of a Novel Cementitious Material from Hydrothermally Synthesized C-S-H Phases. J. Am. Ceram. Soc. 97 (7), 2298–2307. https://doi.org/10.1111/jace.12920

Gou, Z,.; Chang, J. (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J. Eur. Ceram. Soc. 24 (1), 93–99. https://doi.org/10.1016/S0955-2219(03)00320-0

Stephan, D.; Wilhelm, P. (2004) Synthesis of Pure Cementitious Phases by Sol-Gel Process as Precursor. Z. Anorg. Allg. Chem. 630 (10), 1477–1483. https://doi.org/10.1002/zaac.200400090

Gou, Z.; Chang, J.; Zhai, W.; Wang, J. (2005) Study on the Self Setting Property and the In Vitro Bioactivity of β-Ca2SiO4. J. Biomed. Mater. Res. B Appl. Biomater. 73 (2), 244–251. https://doi.org/10.1002/jbm.b.30203 PMid:15793821

Chrysafi, R.; Perraki, Th.; Kakali, G. (2007) Sol–gel preparation of 2CaO·SiO2. J. Eur. Ceram. Soc. 27 (2–3), 1707–1710. https://doi.org/10.1016/j.jeurceramsoc.2006.05.004

Nettleship, I.; Shull, J.L.; Kriven, W. M. (1993) Chemical preparation and phase stability of Ca2SiO4 and Sr2SiO4 powders. J. Eur. Ceram. Soc. 11 (4), 291–298. https://doi.org/10.1016/0955-2219(93)90028-P

Dovál, M.; Palou, M.; Kovár, V. (2006) Hydration and microstructure of binder compounds containing C2AS and C2S synthesized by sol-gel method. Ceramics-Silikáty 50 (2), 106–114.

Hong, S.H.; Young, J.F. (1999) Hydration kinetics and phase stability of dicalcium silicate synthesized by the Pechini process. J. Am. Ceram. Soc. 82 (7), 1681–1686. https://doi.org/10.1111/j.1151-2916.1999.tb01986.x

Zeng, L.; Li, Z. (2014) Solubility of dicalcium silicate in the NaOH–NaAl(OH)4–Na2CO3 solutions: Determination and prediction. Hydrometallurgy 147, 127–133. https://doi.org/10.1016/j.hydromet.2014.05.007




Copyright (c) 2017 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es