Materiales de Construcción, Vol 68, No 329 (2018)

The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars


https://doi.org/10.3989/mc.2018.13716

M. A. Maldonado-García
Instituto Politécnico Nacional, CIIDIR-Oaxaca, Mexico
orcid http://orcid.org/0000-0002-9522-6779

U. I. Hernández-Toledo
Instituto Politécnico Nacional, CIIDIR-Oaxaca, Mexico
orcid http://orcid.org/0000-0001-9392-0487

P. Montes-García
Instituto Politécnico Nacional, CIIDIR-Oaxaca, Mexico
orcid http://orcid.org/0000-0003-3799-8372

P. L. Valdez-Tamez , Mexico
orcid http://orcid.org/0000-0002-1298-2051

Abstract


This study investigated the effects of the addition of untreated sugarcane bagasse ash (UtSCBA) on the microstructural and mechanical properties of mortars. The SCBA was sieved for only five minutes through a No. 200 ASTM mesh, and fully characterized by chemical composition analysis, laser ray diffraction, the physical absorption of gas, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. Mortar mixtures with 0, 10 and 20% UtSCBA as cement replacement and a constant 0.63 water/cementitious material ratio were prepared. Fresh properties of the mortars were obtained. The microstructural characteristics of the mortars at 1, 7, 28, 90 and 600 days were evaluated by SEM and XRD. The compressive strengths of the mortars at the same ages were then obtained. The results show that the addition of 10 and 20% UtSCBA caused a slight decrease in workability of the mortars but improved their microstructure, increasing the long-term compressive strength.

Keywords


Pozzolan; waste treatment; mortar; hydration products; compressive strength

Full Text:


HTML PDF XML

References


Worrell, E.; Price, L.; Martín, N.; Hendriks, C.; Ozawa, M.L. (2001) Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Environ. 26, 303–329.

Hendriks, C.A.; Worrell, E.; de Jager, D.; Blok, K.; Riemer, P. (2004) Emission reduction of greenhouse gases from the cement industry. Greenhouse gas control technologies Conference paper-cement. www.ieagreen.org.uk

International Energy Agency (IEA). Carbon emissions reduction up to 2050. World Business Council for Sustainable Development. Cement Technology Roadmap 2009. https://www.iea.org/publications/freepublications/publication/Cement.pdf

Cement Industry Federation (CIF). Sustainability Report 2011. www.cement.org.au

Josa, A.; Aguado, A.; Cardim, A.; Byars, E. (2007) Comparative analysis of the cycle impact assessment of available cement inventories in the EU. Cem. Concr. Res. 37 [5], 781–788. https://doi.org/10.1016/j.cemconres.2007.02.004

Ganesan, K.; Rajagopal, K.; Thangavel, K. (2007) Evaluation of bagasse ash supplementary cementitious material. Cem. Concr. Comp. 29 [6], 515–524. https://doi.org/10.1016/j.cemconcomp.2007.03.001

Cordeiro, G.C.; Toledo-Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Comp. 30 [5], 410–418. https://doi.org/10.1016/j.cemconcomp.2008.01.001

Morales, E.V.; Villar-Coci-a, E.; Frías, M.; Santos, S.F.; Savastano, J.R.H. (2009) Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation. Cem. Concr. Comp. 31 [1], 22–28. https://doi.org/10.1016/j.cemconcomp.2008.10.004

Cordeiro, G.C.; Toledo-Filho, R.D.; Fairbairn, E.M.R. (2009)a Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Construct. Build. Mat. 23 [10], 3301–3303. https://doi.org/10.1016/j.conbuildmat.2009.02.013

Cordeiro, G.C.; Toledo-Fhilo, R.D.; Tavares, L.M.; Fairbair, E.M.R. (2009)b Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39 [2], 110–115. https://doi.org/10.1016/j.cemconres.2008.11.005

Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009)a Effects of LOI of ground bagasse ash on the compressive strength and sulfate resistance of mortars. Construct. Build. Mat. 23 [12], 3523–3531. https://doi.org/10.1016/j.conbuildmat.2009.06.046

Bahurudeen, A.; Santhanam, M. (2015) Influence of different processing methods on the pozzolanic performance of sugarcane bagasse ash. Cem. Concr. Comp. 56, 32–45.

Frías, M.; Villar, E.; Svastano, H. (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Comp. 33, 490–496.

Dhengare S.; Amrodiya S.; Shelote M.; Asati A.; Bandwaf N.; Anand K.; Jichkar. (2015) Utilization of sugarcane bagasse ash as a supplementary cementitious material in concrete and mortar – a review. International Journal of Civil Engineering and Technology. 6 [4], 94–106. http://www.iaeme.com/ijciet/index.asp

Valencia, G.; Mejía de Gutierrez, R.; Barrera, J.; Delvasto, S. (2012) Estudio de durabilidad y corrosión en morteros armados adicionados con toba volcánica y ceniza de bagazo de ca-a de azúcar. Revista de la Construcción. 12 [22], 112–122. https://doi.org/10.4067/S0718-915X2012000200010

Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. (2009)b Utilization of bagasse ash as a pozzolanic material in concrete. Construct. Build. Mat. 23 [11], 3352–3358. https://doi.org/10.1016/j.conbuildmat.2009.06.030

Unión Nacional de Ca-eros A. C. de México. (2016). Viewed on July 13th 2016, www.caneros.org.mx

Akram, T.; Memon, S.A.; Obaid, H. (2009) Production of low-cost self-compacting concrete using bagasse ash. Construct. Build. Mat. 23 [2], 703–712. https://doi.org/10.1016/j.conbuildmat.2008.02.012

Villar-Coci-a, E.; Valencia-Morales, E.; Gonzáles-Rodriguez, R,; Hernández-Ruiz, J. (2003) Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic-diffusive model. Cem. Concr. Res. 33 [4], 517–524. https://doi.org/10.1016/S0008-8846(02)00998-5

Frías, M.; Villar-Coci-a, E.; Sanchez de Rojas, M.I.; Valencia-Morales, E. (2005) The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-clay ash/lime systems: Application of a diffusive model. Cem. Concr. Res. 35 [11], 2137–2142. https://doi.org/10.1016/j.cemconres.2005.07.005

Bahurudeen, A.; Wani K.; Abdul B.M.; Santhanam, M. (2016) Assessment of pozzolanic performance of sugarcane bagasse ash. J. Mater. Civ. Eng. 28[2], 01–11. https://ascelibrary.org/doi/10.1061/%28ASCE%29MT. 1943-5533.0001361

Seong-Tae Y.; Eun-Ik Y.; Joong-Cheol C. (2006) Effect of specimen sizes, specimen shapes, and placement directions on compressive strength of concrete. Nuclear Engineering and Design 236 [2], 115–127.

German, R M. (1994) Powder metallurgy Science. MPIF Princeton. USA, (1994).

Soares, M.M.N.S.; Poggiali, F.S.J.; Bezerra, A.C.S.; Figueiredo, R.B.; Aguilar, M.T.P.; Catlin, P.R. (2014) The effect of calcination conditions on the physical and chemical characteristics of sugar cane bagasse ash. REM: R. Esc. Minas, Ouro Petro. 67(1), 33–39.

Martirena, J.F.; Middendor, F.B; Gehrke, M; Budelmann, H. (1998) Use of wastes of the sugar industry in lime-pozzolana binders: Study of the reaction. Cem. Concr. Res. 28[11], 1525–1536. https://doi.org/10.1016/S0008-8846(98)00130-6

Somna, R.; Jaturapitakkul, C.; Rattanachu, P.; Chalee, W. (2012) Effect of ground bagasse ash on mechanical and durability properties of recycled aggregated concrete. Materials and Design. 36, 597–603. https://doi.org/10.1016/j.matdes.2011.11.065 https://doi.org/10.1016/j.matdes.2011.11.065

Batra, V.S.; Urbonaite, S.; Svensson, G. (2008) Characterization of unburned carbon in bagasse fly ash. Fuel. 87 [13-14], 2972–2976. https://doi.org/10.1016/j.fuel.2008.04.010

Martirena, F.; Middenford, B.; Day, R.L.; Gehrke, M.; Roque, P.; Martinez, L.; Betancourt S. (2006) Rudimentary, low-tech incinerators as a means to produce reactive pozzolan out of sugar cane straw. Cem. Concr. Res. 36 [6], 1056–1061. https://doi.org/10.1016/j.cemconres.2006.03.016

Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2012) Experimental characterization of binary and ternary blended-cement concretes containing ultrafine residual rice husk and sugar cane bagasse ashes. Construct. Build. Mat. 29, 641–646.

Chandara, C.; Sakai, E.;Azizli, K.A.M.; Ahmad, Z.A.; Hashim, S.F.A. (2010) The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer. Construct. Build. Mat. 24 [9], 1590–1593. https://doi.org/10.1016/j.conbuildmat.2010.02.036

Jímenez-Quero, V.G.; León-Martínez, F.M.; Montes-García, P.; Gaona-Tiburcio, C.; Chacón-Nava, J.G. (2013) Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construct. Build. Mat. 40, 691–701.

Diamond, S. (2004) The microstructure of cement paste and concrete--a visual primer. Cem. Concr. Comp. 26 [8], 919–933. https://doi.org/10.1016/j.cemconcomp.2004.02.028

Giraldo, M.A.; Tobón, J.I. (2006) Mineralogical evolution of Portland cement during hydration process. Dyna. 73 [148], 69–81. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0012-73532006000100007&lng=en&nrm=iso&tlng=es

Torres, J.; Mejía de Gutiérrez, R.; Castelló, R.; Vizcaino, C. (2008) Proceso de hidratación depastas de OPC adicionadas con caolín tratado térmicamente. Revista Facultad de Ingeniería. Universidad de Antioquia. 43, 77–85. http://www.scielo.org.co/pdf/rfiua/n43/n43a07.pdf

Govindarajan, D.; Jayalakshmi, G. (2011) XRD, FIRT and SEM studies on calcined sugarcane bagasse ash blended cement. Archives of Physics Research. 2 [4], 38–44. http://scholarsresearchlibrary.com/APR-vol2-iss4/APR-2011-2-4-38-44.pdf

Hussein, A.A.E.; Shafiq, N.; Nuruddin, M.F.; Memon, F.A. (2014) Compressive strength and microstructure of sugar cane bagasse ash concrete. Research Journal of Applied Sciences, Engineering and Technology. 7 [12], 2569–2577.https://www.researchgate.net/publication/287501413_Compressive_Strength_and_Microstructure_of_Sugar_Cane_Bagasse_Ash_Concrete

Richardson, I.G. (2008) The calcium silicate hydrates. Cem. Concr. Res. 38 [2], 137–158. https://doi.org/10.1016/j.cemconres.2007.11.005

Arizzi, A.; Cultrone, G. (2012) Aerial lime-based mortars blended with a pozzolanic additive and different admixtures: A mineralogical, textural and physical-mechanical study. Construct. Build. Mat. 31, 135–143.

Sisomphon, K.; Franke, L. (2011) Evaluation of calcium hydroxide contents in pozzolanic cement pastes by a chemical extraction method. Construct. Build. Mat. 25 [1], 190–194. https://doi.org/10.1016/j.conbuildmat.2010.06.039

Valdez-Tamez, P.L.; Tushar, D.R.; Rivera-Villareal, R. (2004) Evaluación de la velocidad dehidratación en sistemas puzolanas naturales-portlandita. Revista Ciencia UANL. 8, 190–195. http://eprints.uanl.mx/1606/1/art_puzolanas.pdf.

Amethyst Galleries, Mineral Gallery. Encyclopedia. http:// www.galleries.com/Cristobalite




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es