Materiales de Construcción, Vol 68, No 330 (2018)

Ultrafine portland cement performance

C. Argiz
Science and Technology of Building Materials. School of Civil Engineering, Technical University of Madrid, Spain

E. Reyes
Science and Technology of Building Materials. School of Civil Engineering, Technical University of Madrid, Spain

A. Moragues
Science and Technology of Building Materials. School of Civil Engineering, Technical University of Madrid, Spain


By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement) and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.


Portland cement; Silica fume; Compressive Strength; Hg Porosimetry; Thermal analysis

Full Text:



Sanjuán, M.A.; Menéndez, E.; Argiz ,C.; Moragues, A. (2016) Coal bottom ash research program focused to evaluate a potential portland cement constituent. In: Proceedings of II International Conference on Concrete Sustainability. Madrid, Spain, June, 532-543.

Bentz, D.P.; Haecker, C.J. (1999) An argument for using coarse cements in high performance concretes. Cem. Concr. Res. 29[4], 615–618.

Sanjuán, M.A.; Argiz, C.; Gálvez, J.C.; Moragues, A. (2015) Effect of silica fume fineness on the improvement of Portland cement strength performance. Constr. Build. Mater. 96, 55–64.

Kuhlmann, K.; Ellerbrock, H.G.; Sprung, S. (1985) Particle-size distribution and properties of cement. Part I: Strength of portland cement. ZKG International Cement-Lime-Gypsum. Edition B. 38[4], 169–178.

Thomas, J.J.; Jennings, H.M.; Chen, J.J. (2009) Influence of Nucleation Seeding on the Hydration Mechanisms of Tricalcium Silicate and Cement. J. Phys. Chem. C. 113 [11], 4327–4334.

Goldman, A.; Bentur, A. (1993) The influence of microfillers on enhancement of concrete strength. Cem. Concr. Res. 23 [4], 962–972.

Feng, N.Q.; Shi, Y.X.; Hao, T.Y. (2000) Influence of ultrafine powder on the fluidity and strength of cement paste. Adv. Cem. Res. 12 [3], 89–95.

Roux, N.; Andrade, C.; Sanjuán, M. (1996) Experimental Study of Durability of Reactive Powder Concretes. J. Mater. Civ. Eng. 8 [1], 1–6.

Fernández, A.; Alonso, M.C.; García –Calvo, J.L.; Lothenbach, B. (2016) Influence of the synergy between mineral additions and Portland cement in the physical-mechanical properties of ternary binders. Mater. Construcc. 66 [324], October- December e097.

EN 197-1:2011 Cement - Part 1: Composition. specifications and conformity criteria for common cements.

EN 196-1:2016 Methods of testing cement - Part 1: Determination of strength. European Committee for Standardization (CEN). Brussels.

EN 196-2:2013 Method of testing cement. Chemical analysis of cement.

UNE 83988-1:2008 Concrete durability. Test methods. Determination of the electrical resistivity. Part 1: Direct test (reference method). AENOR. Madrid.

Tobón, J.I.; Payá, J.; Borrachero, M.V.; Soriano, L.; Restrepo, O.J. (2012) Determination of the optimum parameters in the high resolution thermogravimetric analysis (HRTG) for cementitious materials. J. Therm. Anal. Calorim.107 [1], 233–239.

Kong, D.Y.; Du, X.F.; Wei, S.; Zhang, H.; Yang, Y.; Shah, S.P. (2012) Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials. Constr. Build. Mater. 37, 707–715.

Bonavetti, V.L.; Castellano, C.; Donza, H.; Rahhal, V.F.; Irassar, E.F. ((2014) Cement with silica fume and granulated blast-furnace slag: strength behavior and hydratation. Mater. Construcc. 64 [315], July-September e25.

Poon, C.S.; Kou, S.C.; Lam, L. (2006) Compressive strength chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 20 [10], 858–865.

Elahi, A.; Basheer, P.A.M.; Nanukuttan, S.V.; Khan, Q.U.Z. (2010) Mechanical and durability properties of high performance concretes containing supplementary cementitious materials. Constr. Build. Mater. 24 [3], 292–299.

Mazloom, M.; Ramezanianpour, A.A.; Brooks, J.J. (2004) Effect of silica fume on mechanical properties of high-strength concrete. Cem. Concr. Compos. 26 [4], 347–357.

Senhadji Y, Escadeillas G, Mouli M, Khelafi H, Benosman. (2014) Influence of natural pozzolan silica fume and limestone fine on strength acid resistance and microstructure of mortar. Powder Technol. 254, 314–323.

Wang, A.Q.; Zhang, C.Z.; Zhang, N.S. (1999) The theoretic analysis of the influence of the particle-size distribution of cement system on the property of cement. Cem. Concr. Res. 29 [11], 1721–1726.

Mahmoud, S.; Reyes, E.; Moragues, A. (2010) Evolution of microstructure and mechanical behavior of concretes utilized in marine environments. Mater. Des. 31[7], 3412-3418.

Huang, C.Y.; Feldman, R.F. (1985) Hydration reactions in portland cement-silica fume blends. Cem. Concr. Res. 15[4], 585–592.

Langan, B.W.; Weng. K.; Ward, M.A. (2002) Effect of silica fume and fly ash on heat of hydration of Portland cement. Cem. Concr. Res. 32[7], 1045–51.

Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Contact us

Technical support