Materiales de Construcción, Vol 68, No 330 (2018)

Isothermal water vapour permeability of concrete with different supplementary cementitious materials


https://doi.org/10.3989/mc.2018.02517

N. Alderete
LEMIT, CONICET - Magnel Laboratory for Concrete Research, Department of Structural Engineering, Faculty of Engineering and Architecture, Ghent University, Argentina
orcid http://orcid.org/0000-0001-7967-1955

Y. A. Villagrán Zaccardi
LEMIT, CONICET - Magnel Laboratory for Concrete Research, Department of Structural Engineering, Faculty of Engineering and Architecture, Ghent University, Argentina
orcid http://orcid.org/0000-0002-0259-7213

A. A. Di Maio
LEMIT, CONICET, Argentina
orcid http://orcid.org/0000-0002-3667-5654

N. De Belie
Magnel Laboratory for Concrete Research, Department of Structural Engineering, Faculty of Engineering and Architecture, Ghent University, Belgium
orcid http://orcid.org/0000-0002-0851-6242

Abstract


Water vapour permeability (WVP) is a key parameter for the sustainable thermal conditioning of buildings. The study of the WVP in concrete with supplementary cementitious materials (SCMs) allows for the design of structures with improved durability and sustainability. To our knowledge, there is insufficient experimental data in the literature regarding the WVP of concrete with SCMs.

WVP tests were made on concrete mixes containing ground granulated blast-furnace slag (GGBFS) and limestone powder (LP) as a partial replacement for ordinary Portland cement, and of concrete mixes containing pozzolanic cement (NP). Results from three moisture gradients show that GGBFS induces the greatest reduction in WVP, followed by the NP. LP shows a diluting effect of the binder, which could be compensated by GGBFS in the ternary blend. From the comparison between the WVP and the capillary sorption rate, the influence of the SCMs on the connectivity of the smallest pores is assessed.

Keywords


Permeability; Durability; Blast furnace slag; Limestone; Pozzolane

Full Text:


HTML PDF XML

References


Bazant, Z.P.; Najjar, L.J. (1972) Nonlinear water diffusion in nonsaturated concrete. Mater. Struct. 5 [25], 3-20.

Mehta, P. K. (1986). Concrete: structure, properties and materials. Prentice Hall, New Jersey, USA. p. 106.

ACI Committee 233 Report. (2003) GGBFS cement in concrete and mortar. ACI 233R-03. American Concrete Institute, Farmington Hills, Mich.

Bijen, J. (1996). Benefits of slag and fly ash. Constr. Build. Mater. 10 [5], 309-314. https://doi.org/10.1016/0950-0618(95)00014-3

Bouikni, A.; Swamy, R.; Bali, A. (2009) Durability properties of concrete containing 50% and 65% slag. Constr. Build Mater. 23, 2836–2845. https://doi.org/10.1016/j.conbuildmat.2009.02.040

Aïtcin, P., (2008). Binders for Durable and Sustainable Concrete. London, Taylor & Francis.

Özbay, E.; Erdemir, M.; Durmus, H. (2016) Utilization and efficiency of ground granulated blast furnace slag on concrete properties – A review. Constr. Build. Mater. 105, 423– 434. https://doi.org/10.1016/j.conbuildmat.2015.12.153

Yeau, K.Y.; Kim, E.K. (2005) An experimental study on corrosion resistance of concrete with ground granulate blast-furnace slag. Cem. Concr. Res. 35 [7], 1391–1399. https://doi.org/10.1016/j.cemconres.2004.11.010

Matschei, T.; Lothenbach, B.; Glasser, F.P. (2007) Thermodynamic properties of Portland cement hydrates in the system CaO–Al2O3–SiO2–CaSO4–CaCO3–H2O. Cem. Concr. Res. 37, 1379-1410. https://doi.org/10.1016/j.cemconres.2007.06.002

Bonavetti, V.; Donza, H.; Menendez, G.; Cabrera, O.; Irassar, E.F. (2003) Limestone filler cement in low w/c concrete: A rational use of energy. Cem. Concr. Res. 33, 865–871. https://doi.org/10.1016/S0008-8846(02)01087-6

Bonavetti, V.; Donza, H.; Rahhal, V.; Irassar, E. (2000) Influence of initial curing on the properties of concrete containing limestone blended cement. Cem. Concr. Res. 30, 703-708. https://doi.org/10.1016/S0008-8846(00)00217-9

Menéndez, G. (2002) Memorias de las Jornadas Tecnológicas sobre Corrosión de Armaduras en Estructuras de Hormigón [Proceedings of the technological meetings about corrosion in reinforced concrete structures], 96-109 (in Spanish).

Mounanga, P.; Muhammad, K.; El Hachem, R.; Loukili, A. (2011) Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler. Mater. Struct. 44, 437–453. https://doi.org/10.1617/s11527-010-9637-1

Lothenbach, B.; Le Saout, G.; Gallucci, E.; Scrivener, K. (2008) Influence of limestone on the hydration of Portland cements. Cem. Concr. Res. 38, 848–860. https://doi.org/10.1016/j.cemconres.2008.01.002

Matschei, T.; Lothenbach, B.; Glasser, F.P. (2007) The role of calcium carbonate in cement hydration. Cem. Concr. Res. 37, 551–558. https://doi.org/10.1016/j.cemconres.2006.10.013

Bonavetti, V.; Irassar, E.F.; Menéndez, G.; Carrasco, M.F.; Donza, H. (2005) Proceedings fib Simposium Structural Concrete and Time (fib, La Plata, Argentina), 1, 201-208.

Menéndez, G.; Bonavetti, V.; Irassar, E.F. (2003) Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cem. Concr. Comp. 25, 61-67. https://doi.org/10.1016/S0958-9465(01)00056-7

Villagrán Zaccardi, Y.A. (2009) Ingreso de cloruro en hormigones con CPC - Influencias del tiempo y de la capacidad de fijación, [Chloride ingress in concrete with ternary cements – Influence of time and fixation capacity] (UNCPBA, Olavarría), 128 p (in Spanish).

Villagrán Zaccardi, Y.A.; Matiasich, C. (2004) Capacidad de fijación y adsorción de cloruros en cementos [Chloride binding and adsorption capacity in cements], Cienc. Tecnol. Hormig., 11, 59-72.

Menéndez, G.; Bonavetti, V.L.; Irassar, E.F. (2007) Cement with silica fume and granulated blast-furnace slag: strength behavior and hydration. Mater. Construcc. 285, 31-43.

Villagrán Zaccardi, Y.A.; Di Maio, A.A.; Romagnoli, R. (2012) The effect of slag and limestone filler on resistivity, sorptivity, and permeability of concrete with low paste content. MRS Proceedings, Vol. 1488,

Saeidpour, M.;Wadsö, L. (2016) Moisture diffusion coefficients of mortars in absorption and desorption. Cem. Concr. Res. 83, 179–187. https://doi.org/10.1016/j.cemconres.2016.02.003

Chari, M.; Shekarchi, M.; Sobhani, J.; Chari, M. (2016) The effect of temperature on the moisture transfer coefficient of cement-based mortars: An experimental investigation. Constr. Build. Mater. 102, 306-307. https://doi.org/10.1016/j.conbuildmat.2015.10.065

Snoeck, D.; Velasco, L.F.; Mignon, A.; Van Vlierberghe, S.; Dubruel P.; Lodewyckx, P.; De Belie N. (2014). The influence of different drying techniques on the water sorption properties of cement-based materials. Cem. Concr. Res. 64, 54–62. https://doi.org/10.1016/j.cemconres.2014.06.009

Zhang, J.; Scherer, G.W. (2011) Comparison of methods for arresting hydration of cement, Cem. Concr. Res. 41, 1024– 1036. https://doi.org/10.1016/j.cemconres.2011.06.003

Kearsley, E.P.; Wainwright J. (2001) Porosity and permeability of foamed concrete, Cem. Concr. Res. 31, 805–812 . https://doi.org/10.1016/S0008-8846(01)00490-2

Vejmelková, E.; Keppert, M.; Grzeszczyk, S.; Skalin, B.; Cerny, R. (2011) Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag. Constr. Build. Mater. 25, 1325–1331. https://doi.org/10.1016/j.conbuildmat.2010.09.012

M?ahoncáková, E.; Pavlíková, M.; Grzeszczyk, S.; Rovnaníková, P.; Cerny, R. (2008) Hydric, thermal and mechanical properties of self-compacting concrete containing different fillers. Constr. Build. Mater. 22, 1594– 1600.

ASTM C127-07 (2007), Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate, 6 p.

ASTM C128-15 (2015), Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, 6 p.

ASTM C117-13 (2013), Standard test method for materials finer than 75-?m (No. 200) sieve in mineral aggregates by washing, 3 p.

ASTM C136/C136M-14 (2014), Standard test method for sieve analysis of fine and coarse aggregates, 5 p.

ASTM C1017/C1017M-13e (2013), Standard specification for chemical admixtures for use in producing flowing concrete, 9 p.

ASTM C204-16 (2016), Standard test methods for fineness of hydraulic cement by air-permeability apparatus, 10 p.

ASTM C786/C786M-10(2016), Standard test method for fineness of hydraulic cement and raw materials by the 300- ?m (No. 50), 150-?m (No. 100), and 75-?m (No. 200) sieves by wet methods, 4 p.

ASTM C349-14 (2014), Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure), 4 p.

ASTM C188-15 (2015), Standard test method for density of hydraulic cement, 3 p.

ASTM C989/C989M-14 (2014), Standard specification for slag cement for use in concrete and mortars, 8 p.

ASTM C114-15 (2015), Standard test methods for chemical analysis of hydraulic cement, 32 p.

ASTM C231/C231M-14 (2014), Standard test method for air content of freshly mixed concrete by the pressure method, 9 p.

ASTM C138/C138M-16a (2016), Standard test method for density (unit weight), yield, and air content (gravimetric) of concrete, 6 p.

ASTM C143/C143M-15a (2015), Standard test method for slump of hydraulic-cement concrete, 4 p.

ASTM C232/C232M-14 (2014), Standard test method for bleeding of concrete, 3 p.

ASTM C 642 –13 (2013), Standard test method for density, absorption, and voids in hardened concrete, 3 p.

ASTM C39/C39M-16b (2016), Standard test method for compressive strength of cylindrical concrete specimens, 7 p.

IRAM 1871 (2004) Hormigón. Método para la determinación de la capacidad y velocidad de succión capilar de agua para hormigón endurecido. [Argentinian Standard. Concrete. Test method for the determination of the water capillary sorption capacity and rate of hardened concrete].

Goossens, E.L.J.; van der Zanden, A.J.J.; van der Spoel, W.H. (2004) The measurement of the moisture transfer properties of paint films using the cup method. Prog. Org. Coat. 49 [3], 270–274. https://doi.org/10.1016/j.porgcoat.2003.10.008

Feng, C.; Meng, Q.; Feng, Y.; Janssen, H. (2015) Influence of pre-conditioning methods on the cup test results. Ener. Proc. 78, 1383–1388. https://doi.org/10.1016/j.egypro.2015.11.158

ISO 12572:2001 (2001) Hygrothermal performance of building materials and products - Determination of water vapour transmission properties. International Organization for Standardization.

ASTM E96/E96M-16 (2016), Standard test methods for water vapour transmission of materials, 14 p.

Joy, F.; Wilson, A. (1963) Standardization of the dish method for measuring water vapour transmission. Research paper n° 279 of the Division of Building Research.

Hu, J. (2004). Porosity of concrete: morphological study of model concrete. Doctoral thesis, TU Delft. uuid:7ec84b76-d120-48f7-96a4-b68de2463154.

Nguyen, H. (2011) Water and heat transfer in cement based materials. Doctoral thesis, University of Tromso. http://hdl.handle.net/10037/3443.

Nilsson, L-O. (1980). Hygroscopic moisture in concrete, drying measurements & related material properties. Division of building materials, Lund Institute of Technology, Sweden.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es