Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures

Authors

DOI:

https://doi.org/10.3989/mc.2018.00617

Keywords:

Active addition, Compressive strength, Mortar, Pozzolane, Thermal analysis

Abstract


Portland cement (OPC) production is one of the most contaminating greenhouse gas producing activities. In order to reduce OPC consumption, several alternatives are being assessed, and the use of pozzolanic material is one of them. This paper presents study on the reactivity of sugarcane bagasse ash (SCBA), a residue from sugarcane industry, as a pozzolanic material. In order to evaluate SCBA reactivity, it was mixed in pastes with hydrated lime and OPC, which were microstructurally characterised. These studies showed that SCBA presents some pozzolanic characteristics. Studies on mortars in which OPC was replaced by SCBA in the range 10–30% were also carried out. Replacement in the range 15–20% yielded the best behaviour in terms of compressive strength. Finally, it can be concluded this ash could be valorised despite its relative low pozzolanic reactivity.

Downloads

Download data is not yet available.

References

World cement production. CEMBUREAU – The European Cement Association Website; https://cembureau.eu/media/ 1503/2015activityreport_cembureau.pdf

Guo, X.; Shi, H.; Dick, W.A. (2010) Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem. Concr. Compos. 32, 142–7. https://doi.org/10.1016/j.cemconcomp.2009.11.003

Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials. 3rd ed. New York: McGraw- Hill, (2006).

Mo, K.H.; Alengaram, U.J.; Jumaat, M.Z. (2016) Structural performance of reinforced geopolymer concrete members: A review, Constr. Build. Mater. 120, 251-264. https://doi.org/10.1016/j.conbuildmat.2016.05.088

Sharp, J.H.; Gartner, E.M.; Macphee, D.E. (2010) Novel cement system (sustainability). Session 2 of the Fred Glasser cement science symposium. Adv. Cem. Res. 22(4), 195–202. https://doi.org/10.1680/adcr.2010.22.4.195

BS EN 197-1. Cement – Part 1: Composition, specifications and conformity criteria for common cements. London: European Committee For Standardisation; (2011).

Siddique, R.; Khan, M.I. Supplementary Cementing Materials. 1st ed. Berlin: Springer, (2011). https://doi.org/10.1007/978-3-642-17866-5

Siddique, R. Waste Material and By-Products in Concrete. 1st ed. Berlin: Springer, (2008).

Küçükyıldırım, E.; Uzal, B. (2014) Characteristics of calcined natural zeolites for use in high-performance pozzolan blended cements. Constr. Build. Mater. 73, 229–34. https://doi.org/10.1016/j.conbuildmat.2014.09.081

Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.V.; Akasaki, J.L.; Payá, J. (2014) New method to assessthe pozzolanic reactivity of mineral admixtures by means pH and electrical conductivity measurementsin lime:pozzolan suspensions. Mater. Construc. 64 [316], e032. https://doi.org/10.3989/mc.2014.00914

Wongkeo, W.; Thongsanitgarn, P.; Chaipanich, A. (2012) Compressive strength and drying shrinkage of fly ash-bottom ash-silica fume multi-blended cement mortars. Mater. Des. 36, 655-62. https://doi.org/10.1016/j.matdes.2011.11.043

Lee, C.L.; Huang, R.; Lin, W.T.; Weng, T.L. (2012) Establishment of the durability indices for cement-based composite containing supplementary cementitious materials. Mater. Des. 37, 28-39. https://doi.org/10.1016/j.matdes.2011.12.030

Sinsiri, T.; Kroenhong, W.; Jaturapitakkul, C.; Chindaprasirt, P. (2012) Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste. Mater. Des. 42, 424-33. https://doi.org/10.1016/j.matdes.2012.06.030

Pereira, C.L.; Savastano Jr., H.; Payá, J.; Santos, S.F.; Borrachero, M.V.; Monzó, J. (2013) Use of highly reactive rice husk ash in the production of cement matrix reinforced with green coconut fiber. Ind. Crop. Prod. 49, 88–96. https://doi.org/10.1016/j.indcrop.2013.04.038

Paiva, H.; Velosa, A.; Cachim, P.; Ferreira, V.M. (2016) Effect of pozzolans with diferent physical and chemical characteristics on concrete properties. Mater. Construc. 66 [322], 1-12.

Hoi, L.W.S.; Martincigh, B.S. (2013) Sugar cane plant fibres: Separation and characterization. Ind. Crop. Prod. 47, 1–12. https://doi.org/10.1016/j.indcrop.2013.02.017

Hugot, E. Handbook of Cane Sugar Engineering. 3rd ed. Amsterdam:Elsevier Science Publishers, (1986).

Sugarcane production. FAOSTAT – Food and Agriculture Organisation of the United Nations, Statistics Division; http://www.fao.org/faostat/en/#data/QC

Sugarcane production. UNICA – União da Indústria de Cana-de-Açúcar Website; http://www.unicadata.com. br/index.php?idioma=2

A Geração Termoelétrica com a Queima do Bagaço de Cana-de-Açúcar no Brasil. CONAB – Companhia Nacional de Abastecimento; http://www.agricultura.gov.br/assuntos/ sustentabilidade/agroenergia/arquivos-termoeletrica-com-a-queima-do-bagaco-de-cana-de-acucar/ termoeletrica-com-a-queima-do-bagaco-de-cana-de- acucar-no-brasil-safra-2009-2010.pdf

Cortez, L.A.B.; Gómez, E.O. (1998) A method for exergy analysis of sugarcane bagasse boilers. Braz. J. Chem. Eng. 15 [1]. https://doi.org/10.1590/S0104-66321998000100006

Souza, A.E.; Teixeira, S.R.; Santos, G.T.A.; Costa, F.B.; Longo, E. (2011) Reuse of sugarcane bagasse ash (SCBA) to produce ceramic materials. J. Environ. Manage. 92, 2774–80. https://doi.org/10.1016/j.jenvman.2011.06.020 PMid:21733619

Hofsetz, K.; Silva, M.A. (2012) Brazilian sugarcane bagasse: Energy and non-energy consumption. Biomass Bioenerg 46, 564–573. https://doi.org/10.1016/j.biombioe.2012.06.038

Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. (2009) Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 39, 110–115. https://doi.org/10.1016/j.cemconres.2008.11.005

Frías, M.; Villar, E.; Savastano, H. (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem. Concr. Compos. 33, 490–496. https://doi.org/10.1016/j.cemconcomp.2011.02.003

Fairbairn, E.M.R.; Americano, B.B.; Cordeiro, G.C.; Paula, T.P.; Toledo Filho, R.D.; Silvoso, M.M. (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J. Environ. Manage. 91, 1864–1871. https://doi.org/10.1016/j.jenvman.2010.04.008 PMid:20493626

Cordeiro, G.C.; Toledo Filho, R.D.; Fairbairn, E.M.R. (2009) Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 23, 3301–3303. https://doi.org/10.1016/j.conbuildmat.2009.02.013

UNE-EN 196-5. Método de ensayo de cementos. Parte 5: Ensayo de puzolanicidad para los cementos puzolánicos. Madrid: Asociación Espa-ola de Normalización y Certificación – AENOR; (2011).

NBR 7215. Cimento Portland – Determinação da resistência à compressão. Rio de Janeiro: Associação Brasileira de Normas Técnicas – ANBT; (1996).

ASTM C-618. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Philadelphia: ASTM International; (2005).

Allahverdi, A.; Shaverdi, B.; Kani, E. (2010) Influence of sodium oxide on properties of fresh and hardened paste of alkali-activated blast-furnace slag. Int. J. Civ. Eng. 8, 304–314.

Yu, P.; Kirkpatrick, R.J.; Poe, B.; McMillan, P.F.; Cong, X. (1999) Structure of calcium silicate hydrate (C-S-H): Near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3), 742–748. https://doi.org/10.1111/j.1151-2916.1999.tb01826.x

Moraes, J.C.B.; Akasaki, J.L.; Melges, J.L.P.; Monzó, J.; Borrachero, M.V.; Soriano, L.; Payá, J.; Tashima, M.M. (2015) Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: Microstructural characterisation of pastes and mechanical strength of mortars. Constr. Build. Mater. 94, 670–677. https://doi.org/10.1016/j.conbuildmat.2015.07.108

Murat, M. (1983) Hydration reaction and hardening of calcined clays and related minerals: II. Influence of mineralogical properties of raw-kaolinite on the reactivity of metakaolinite. Cem. Concr. Res. 11, 511–518. https://doi.org/10.1016/0008-8846(83)90010-8

Serry, M.A.; Taha, A.S.; El-Hemaly, S.A.S.; El-Didamony, H. (1984) Metakaolin-lime hydration products. Thermochim. Acta 79, 103–110. https://doi.org/10.1016/0040-6031(84)87097-5

Lorca, P.; Calabuig, R.; Benlloch, J.; Soriano, L.; Payá, J. (2014) Microconcrete with partial replacement of Portland cement by fly ash and hydrated lime addition. Mater. Des. 64, 535–541. https://doi.org/10.1016/j.matdes.2014.08.022

Published

2018-06-30

How to Cite

Pereira, A. M., Moraes, J. C., Moraes, M. J., Akasaki, J. L., Tashima, M. M., Soriano, L., Monzó, J., & Payá, J. (2018). Valorisation of sugarcane bagasse ash (SCBA) with high quartz content as pozzolanic material in Portland cement mixtures. Materiales De Construcción, 68(330), e153. https://doi.org/10.3989/mc.2018.00617

Issue

Section

Research Articles

Most read articles by the same author(s)