Materiales de Construcción, Vol 68, No 331 (2018)

Identification of best available thermal energy storage compounds for low-to-moderate temperature storage applications in buildings


https://doi.org/10.3989/mc.2018.10517

J. Lizana
Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0002-1802-5017

R. Chacartegui
Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0001-7285-8661

A. Barrios-Padura
Escuela Técnica Superior de Arquitectura, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0003-1054-010X

J. M. Valverde
Facultad de Física, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0002-2345-8888

C. Ortiz
Facultad de Física, Universidad de Sevilla, Spain
orcid http://orcid.org/0000-0002-7795-676X

Abstract


Over the last 40 years different thermal energy storage materials have been investigated with the aim of enhancing energy efficiency in buildings, improving systems performance, and increasing the share of renewable energies. However, the main requirements for their efficient implementation are not fully met by most of them. This paper develops a comparative review of thermophysical properties of materials reported in the literature. The results show that the highest volumetric storage capacities for the best available sensible, latent and thermochemical storage materials are 250 MJ/m3, 514 MJ/m3 and 2000 MJ/m3, respectively, corresponding to water, barium hydroxide octahydrate, and magnesium chloride hexahydrate. A group of salt hydrates and inorganic eutectics have been identified as the most promising for the development of competitive thermal storage materials for cooling, heating and comfort applications in the short-term. In the long-term, thermochemical storage materials seem promising. However, additional research efforts are required.

Keywords


Thermal energy; Characterization; Thermal energy storage materials; Phase change materials; Thermophysical properties

Full Text:


HTML PDF XML

References


Pielichowska, K.; Pielichowski, K. (2014) Phase change materials for thermal energy storage. Prog. Mater. Sci. 30, 67-123. https://doi.org/10.1016/j.pmatsci.2014.03.005

Mehling, H.; Cabeza, L.F. (2008) Heat and cold storage with PCM. An up to date introduction into basics and applications, Springer.

Abhat, A. (1980) Short term thermal energy storage. Rev. Phys. Appliquée. 15, 477-501. 1

Abhat, A. (1983) Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy. 30, 313-332. https://doi.org/10.1016/0038-092X(83)90186-X

Lane, G.A. (1980) Low temperature heat storage with phase change materials. Int. J. Ambient Energy. 1, 155-168. https://doi.org/10.1080/01430750.1980.9675731

Telkes, M. (1980) Thermal energy storage in salt hydrates. Sol. Energy Mater. 2, 381-393. https://doi.org/10.1016/0165-1633(80)90033-7

Telkes, M. Thermal storage in salt-hydrates. in: Sol. Mater. Sci., Academic Press, : pp. 377-404.

Schröder, J.; Gawron, K. (1981) Latent heat storage. Int. J. Energy Res. 5, 103-109. https://doi.org/10.1002/er.4440050202

Naumann, R.; Emons, H.H. (1989) Results of thermal analysis for investigation of salt hydrates as latent heatstorage materials. J. Therm. Anal. 35, 1009-1031. https://doi.org/10.1007/BF02057256

Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. (2009) Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318-345. https://doi.org/10.1016/j.rser.2007.10.005

Sharma, R.K.; Ganesan, P.; Tyagi, V. V.; Metselaar, H.S.C.; Sandaran, S.C. (2015) Developments in organic solid-liquid phase change materials and their applications in thermal energy storage. Energy Convers. Manag. 95, 193-228. https://doi.org/10.1016/j.enconman.2015.01.084

Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A. I. (2011) Materials used as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 15, 1675-1695. https://doi.org/10.1016/j.rser.2010.11.018

Tyagi, V.V.; Buddhi, D. (2007) PCM thermal storage in buildings: A state of art. Renew. Sustain. Energy Rev. 11, 1146-1166. https://doi.org/10.1016/j.rser.2005.10.002

Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyama, T. (2011) Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 15, 1373-1391. https://doi.org/10.1016/j.rser.2010.10.006

Zhou, D.; Zhao, C.Y.; Tian, Y. (2012) Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy. 92, 593-605. https://doi.org/10.1016/j.apenergy.2011.08.025

N'Tsoukpoe, K.E.; Liu, H.; Le Pierrès, N.; Luo, L. (2009) A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 13, 2385-2396. https://doi.org/10.1016/j.rser.2009.05.008

Yu, N.; Wang, R.Z.; Wang, L.W. (2013) Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 39, 489-514. https://doi.org/10.1016/j.pecs.2013.05.004

de Gracia, A.; Cabeza, L.F. (2015) Phase change materials and thermal energy storage for buildings. Energy Build. 103, 414-419. https://doi.org/10.1016/j.enbuild.2015.06.007

Kenisarin, M.; Mahkamov, K. (2007) Solar energy storage using phase change materials. Renew. Sustain. Energy Rev. 11, 1913-1965. https://doi.org/10.1016/j.rser.2006.05.005

Kenisarin, M.; Mahkamov, K. (2016) Salt hydrates as latent heat storage materials:Thermophysical properties and costs. Sol. Energy Mater. Sol. Cells. 145, 255-286. https://doi.org/10.1016/j.solmat.2015.10.029

Alva, G.; Liu, L.; Huang, X.; Fang, G. (2017) Thermal energy storage materials and systems for solar energy applications. Renew. Sustain. Energy Rev. 68, 693-706. https://doi.org/10.1016/j.rser.2016.10.021

Alva, G.; Lin, Y.; Liu, L.; Fang, G. (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy Build. 144, 276-294. https://doi.org/10.1016/j.enbuild.2017.03.063

Kalaiselvam, S.; Parameshwaran, R. (2014) Thermal energy storage technologies for sustainability: systems design, assessment, and applications, 1st ed.Academic Press. PMid:25035584

Navarro, L.; de Gracia, A.; Niall, D.; Castell, A.; Browne, M.; McCormack, S.J.; Griffiths, P.; Cabeza, L.F. (2015) Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system. Renew. Energy. 85, 1334-1356. https://doi.org/10.1016/j.renene.2015.06.064

Navarro, L.; Gracia, A. De; Niall, D.; Castell, A.; Browne, M.; Mccormack, S.J.; Grif, P.; Cabeza, L.F. (2016) Thermal energy storage in building integrated thermal systems: A review. Part 1. Active storage systems. Renew. Energy. 88, 526-547. https://doi.org/10.1016/j.renene.2015.11.040

Lizana, J.; Chacartegui, R.; Barrios-Padura, Á.; Ortiz, C.; Vilches, A. Evaluation of thermal energy storage technologies for heating, cooling and hot water applications road to zero energy buildings. in: 11th Conf. Sustain. Dev. Energy, Water Environ. Syst. SDEWES 2016, Lisbon.: pp. 1-16.

Heier, J.; Bales, C.; Martin, V. (2015) Combining thermal energy storage with buildings - a review. Renew. Sustain. Energy Rev. 42, 1305-1325. https://doi.org/10.1016/j.rser.2014.11.031

Waqas, A.; Ud Din, Z. (2013) Phase change material (PCM) storage for free cooling of buildings-A review. Renew. Sustain. Energy Rev. 18, 607-625. https://doi.org/10.1016/j.rser.2012.10.034

Hasan, A.; McCormack, S.J.; Huang, M.J.; Norton, B. (2014) Energy and cost saving of a photovoltaic-phase change materials (PV-PCM) System through temperature regulation and performance enhancement of photovoltaics. Energies. 7, 1318-1331. https://doi.org/10.3390/en7031318

Huang, M.J.; Eames, P.C.; Norton, B. (2004) Thermal regulation of building-integrated photovoltaics using phase change materials. Int. J. Heat Mass Transf. 47, 2715-2733. https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015

Huang, M.J.; Eames, P.C.; Norton, B. (2006) Phase change materials for limiting temperature rise in building integrated photovoltaics. Sol. Energy. 80, 1121-1130. https://doi.org/10.1016/j.solener.2005.10.006

Hyman, L. Overview. in: Sustain. Therm. Storage Syst. Planning, Des. Oper., The McGraw-Hill, : pp. 1-23.

International Energy Agency (2013) Transition to Sustainable Buildings. Strategies and Opportunities to 2050, OECD/IEA.

Lizana, J.; Ortiz, C.; Soltero, V.M.; Chacartegui, R. (2017) District heating systems based on low-carbon energy technologies in Mediterranean areas. Energy. 120, 397-416. https://doi.org/10.1016/j.energy.2016.11.096

Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Ortiz, C. (2017) Advanced low-carbon energy measures based on thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 82, 3705-3749. https://doi.org/10.1016/j.rser.2017.10.093

Ståhl, F. Influence of thermal mass on the heating and cooling demands of a building unit, PhD thesis. Sweden: Chalmers University of Technology, 2009. http://publications.lib.chalmers.se/publication/102603-influence-of-thermalmass-on-the-heating-and-cooling-demands-of-a-building-unit%5Cnhttp://publications.lib.chalmers.se/records/fulltext/102603.pdf.

Harikrishnan, S.; Deenadhayalan, M.; Kalaiselvam, S. (2014) Experimental investigation of solidification and melting characteristics of composite PCMs for building heating application. Energy Convers. Manag. 86, 864-872. https://doi.org/10.1016/j.enconman.2014.06.042

Tatsidjodoung, P.; Le Pierrès, N.; Luo, L. (2013) A review of potential materials for thermal energy storage in building applications. Renew. Sustain. Energy Rev. 18, 327-349. https://doi.org/10.1016/j.rser.2012.10.025

Paksoy, H.Ö. (2007) Thermal Energy Storage for Sustainable Energy Consumption.

ISO 10456:2007 (2007). Building materials and products. Hygrothermal properties. Tabulated design values and procedures for determining declared and design thermal values.

Tudela, F. (1982) Ecodise-o, Universidad Autónoma Metropolitana de Xochimilco. PMid:6820701

Asan, H.; Sancaktar, Y.S. (1998) Effects of wall's thermophysical properties on time lag and decrement factor. Energy Build. 28, 159-166. https://doi.org/10.1016/S0378-7788(98)00007-3

Onder, E.; Sarier, N.; Cimen, E. (2007) Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics. Thermochim. Acta. 467, 63-72. https://doi.org/10.1016/j.tca.2007.11.007

Hasnain S.M. (1998) Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques. Energy Convers. Manag. 39, 1127-1138. https://doi.org/10.1016/S0196-8904(98)00025-9

Konuklu, Y.; Paksoy, H.O.; Unal, M. (2015) Nanoencapsulation of n-alkanes with poly(styrene-co-ethylacrylate) shells for thermal energy storage. Appl. Energy. 150, 335-340. https://doi.org/10.1016/j.apenergy.2014.11.066

Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23, 251-283. https://doi.org/10.1016/S1359-4311(02)00192-8

Schmidt, R.; Griesbaum, K.; Behr, A.; Biedenkapp, D.; Voges, H.-W.; Garbe, D.; Paetz, C.; Collin, G.; Mayer, D.; Höke, H. Hydrocarbons. in: Ullmann's Encycl. Ind. Chem. Wiley-VCH.

Mehling, H.; Cabeza, L.F. Solid-liquid phase change materials. in: Heat Cold Storage with PCM. An up to Date Introd. into Basics Appl. Springer: pp. 11-55. PMid:22171583

Nagano, K.; Mochida, T.; Takeda, S.; Doma_ski, R.; Rebow, M. (2003) Thermal characteristics of manganese (II) nitrate hexahydrate as a phase change material for cooling systems. Appl. Therm. Eng. 23, 229-241. https://doi.org/10.1016/S1359-4311(02)00161-8

Dimaano, M.N.R.; Watanabe, T. (2002) The capric-lauric acid and pentadecane combination as phase change material for cooling applications. Appl. Therm. Eng. 22, 365-377. https://doi.org/10.1016/S1359-4311(01)00095-3

Koschenz, M.; Lehmann, B. (2004) Development of a thermally activated ceiling panel with PCM for application in lightweight and retrofitted buildings. Energy Build. 36, 567-578. https://doi.org/10.1016/j.enbuild.2004.01.029

Paris, J.; Falardeau, M.; Villeneuve, C. (1993) Thermal storage by latent heat: a viable option for energy conservation in buildings. Energy Sources. 15, 85-93. https://doi.org/10.1080/00908319308909014

He, F.; Wang, X.; Wu, D. (2014) New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor. Energy. 67, 223-233. https://doi.org/10.1016/j.energy.2013.11.088

Sasaguchi, K.; Viskanta, R. (1989) Phase Change Heat Transfer During Melting and Resolidification of Melt Around Cylindrical Heat Source(s)/Sink(s). J. Energy Resour. Technol. 111, 43-49. https://doi.org/10.1115/1.3231400

Mohaddes, F.; Islam, S.; Shanks, R.; Fergusson, M.; Wang, L.; Padhye, R. (2014) Modification and evaluation of thermal properties of melamine-formaldehyde/ n-eicosane microcapsules for thermo-regulation applications. Appl. Therm. Eng. 71, 11-15. https://doi.org/10.1016/j.applthermaleng.2014.06.016

Sari, A.; Karaipekli, A. (2007) Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/ expanded graphite composite as phase change material. Appl. Therm. Eng. 27, 1271-1277. https://doi.org/10.1016/j.applthermaleng.2006.11.004

Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. (2004) Free-cooling of buildings with phase change materials. Int. J. Refrig. 27, 839-849. https://doi.org/10.1016/j.ijrefrig.2004.03.015

Marín, J.M.; Zalba, B.; Cabeza, L.F.; Mehling, H. (2005) Improvement of a thermal energy storage using plates with paraffin-graphite composite. Int. J. Heat Mass Transf. 48, 2561-2570. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.027

Cabeza, L.F.; Mehling, H.; Hiebler, S.; Ziegler, F. (2002) Heat transfer enhancement in water when used as PCM in thermal energy storage. Appl. Therm. Eng. 22, 1141-1151. https://doi.org/10.1016/S1359-4311(02)00035-2

Mettawee, E.-B.S.; Assassa, G.M.R. (2007) Thermal conductivity enhancement in a latent heat storage system. Sol. Energy. 81, 839-845. https://doi.org/10.1016/j.solener.2006.11.009

Dincer, I.; Rosen, M.A. (2010) Thermal Energy Storage: Systems and Applications, 2aJohn Wiley and Sons.

Babich, M.W.; Hwang, S.W.; Mounts, R.D. (1992) The thermal analysis of energy storage materials by differential scanning calorimetry. Thermochim. Acta. 210, 77-82. https://doi.org/10.1016/0040-6031(92)80278-5

Sarı, A.; Alkan, C.; Altınta_, A. (2014) Preparation, characterization and latent heat thermal energy storage properties of micro-nanoencapsulated fatty acids by polystyrene shell. Appl. Therm. Eng. 73, 1160-1168. https://doi.org/10.1016/j.applthermaleng.2014.09.005

Sari, A.; Karaipekli, A. (2008) Preparation and thermal properties of capric acid/palmitic acid eutectic mixture as a phase change energy storage material. Mater. Lett. 62, 903-906. https://doi.org/10.1016/j.matlet.2007.07.025

Pielichowski, K.; Flejtuch, K. (2003) Differential Scanning Calorimetry Study of Blends of Poly (ethylene glycol) with Selected Fatty Acids. Macromol. Mater. Eng. 288, 259-264. https://doi.org/10.1002/mame.200390022

Sari, A.; Kaygusuz, K. (2003) Some fatty acids used for latent heat storage: Thermal stability and corrosion of metals with respect to thermal cycling. Renew. Energy. 28, 939-948. https://doi.org/10.1016/S0960-1481(02)00110-6

Kele_, S.; Kaygusuz, K.; Sari, A. (2005) Lauric and myristic acids eutectic mixture as phase change material for lowtemperature heating applications. Int. J. Energy Res. 29, 857-870. https://doi.org/10.1002/er.1111

Sari, A.; Kaygusuz, K. (2001) Thermal performance of myristic acid as a phase change material for energy storage application. Renew. Energy. 24, 303-317. https://doi.org/10.1016/S0960-1481(00)00167-1

Sari, A.; Kaygusuz, K. (2002) Thermal performance of palmitic acid as a phase change energy storage material. Energy Convers. Manag. 43, 863-876. https://doi.org/10.1016/S0196-8904(01)00071-1

Cao, L.; Tang, F.; Fang, G. (2014) Preparation and characteristics of microencapsulated palmitic acid with TiO2 shell as shape-stabilized thermal energy storage materials. Sol. Energy Mater. Sol. Cells. 123, 183-188. https://doi.org/10.1016/j.solmat.2014.01.023

Sari, A.; Kaygusuz, K. (2001) Thermal energy storage system using stearic acid as a phase change material. Sol. Energy. 71, 365-376. https://doi.org/10.1016/S0038-092X(01)00075-5

Babich, M.W.; Hwang, S.W.; Mounts, R.D. (1992) The search for novel energy storage materials differential scanning caldrimetry. 210, 83-88.

Feldman, D.; Shapiro, M.M.; Banu, D. (1986) Organic phase change materials for thermal energy storage. Sol. Energy Mater. 13, 1-10. https://doi.org/10.1016/0165-1633(86)90023-7

Kenisarin, M.M. (1993) Short-Term Storage of Solar Energy. 1. Low Temperature Phase-Change Materials. Geliotekhnika. 29, 46-64.

Khudhair, A.M.; Farid, M.M. (2004) A review on energy conservation in building applications with thermal storage by latent heat using phase change materials. Energy Convers. Manag. 45, 263-275. https://doi.org/10.1016/S0196-8904(03)00131-6

Hawes, D.W.; Feldman, D.; Banu, D. (1993) Latent heat storage in building materials. Energy Build. 20, 77-86. https://doi.org/10.1016/0378-7788(93)90040-2

Babich, M.W.; Benrashid, R.; Mounts, R.D. (1994) DSC studies of new energy storage materials. Part 3. Thermal and flammability studies. Thermochim. Acta. 243, 193-200. https://doi.org/10.1016/0040-6031(94)85054-2

Alkan, C.; Kaya, K.; Sari, A. (2008) Preparation and thermal properties of ethylene glycole distearate as a novel phase change material for energy storage. Mater. Lett. 62, 1122-1125. https://doi.org/10.1016/j.matlet.2007.07.061

Salau_n, F.; Bedek, G.; Devaux, E.; Dupont, D.; Gengembre, L. (2011) Microencapsulation of a cooling agent by interfacial polymerization: Influence of the parameters of encapsulation on poly(urethane-urea) microparticles characteristics. J. Memb. Sci. 370, 23-33.

Kaizawa, A.; Maruoka, N.; Kawai, A.; Kamano, H.; Jozuka, T.; Senda, T.; Akiyama, T. (2007) Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat Mass Transf. 44, 763-769. https://doi.org/10.1007/s00231-007-0311-2

Kakiuchi, H.; Yamayaki, M.; Yabe, M.; Chihara, S.; Terunuma, Y.; Sakata, Y.; Usami, T. A study of erythritol as phase change material. in: 2nd Work. IEA ECES IA Annex 10, Sofia (Bulgaria).

Pielichowski, K.; Flejtuch, K. (2002) Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym. Adv. Technol. 13, 690-696. https://doi.org/10.1002/pat.276

Zeng, J.L.; Zhang, J.; Liu, Y.Y.; Cao, Z.X.; Zhang, Z.H.; Xu, F.; Sun, L.X. (2008) Polyaniline/1-tetradecanol composites: Form-stable PCMS and electrical conductive materials. J. Therm. Anal. Calorim. 91, 455-461. https://doi.org/10.1007/s10973-007-8495-8

Farid, M.; Hamad, F.; Abu-Arabi, M. (1998) Phase change cool storage using dimethyl-sulfoxide. Energy Convers. Manag. 39, 819-826. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V2P-3SYXFDSF&_user=984461&_coverDate=06%2F10%2F1998&_rdoc=13&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235708%231998%23999609991%2314010%23FLA%23display%23V.

Kenar, J.A. (2010) Latent heat characteristics of biobased oleochemical carbonates as potential phase change materials. Sol. Energy Mater. Sol. Cells. 94, 1697-1703. https://doi.org/10.1016/j.solmat.2010.05.031

Belton, G.R.; Ajami, F. (1973) Thermochemistry of Salt Hydrates (Report no. NSF/RANN/SE/GI27976/TR/73/4).

Tyagi, V. V.; Buddhi, D. (2008) Thermal cycle testing of calcium chloride hexahydrate as a possible PCM for latent heat storage. Sol. Energy Mater. Sol. Cells. 92, 891-899. https://doi.org/10.1016/j.solmat.2008.02.021

Halawa, E.; Saman, W. (2011) Thermal performance analysis of a phase change thermal storage unit for space heating. Renew. Energy. 36, 259-264. https://doi.org/10.1016/j.renene.2010.06.029

Bilen, K.; Takgil, F.; Kaygusuz, K. (2008) Thermal Energy Storage Behavior of CaCl2.6H2O during Melting and Solidification. Energy Sources Part A. 775-787.

Farid, M.M.; Khudhair, A.M.; Razack, S.A.K.; Al-Hallaj, S. (2004) A review on phase change energy storage: Materials and applications. Energy Convers. Manag. 45, 1597-1615. https://doi.org/10.1016/j.enconman.2003.09.015

Heckenkamp, J.; Baumann, H. (1997) Latentwärmespeicher. Sonderdruck aus Nachrichten. 11, 1075-1081.

Etheridge, D.; Murphy, K.; Reay, D. (2006) A PCM/heat pipe cooling system for reducing air conditioning in buildings: review of options and report on field tests. Build. Serv. Eng. Res. Technol. 27, 27-39. https://doi.org/10.1191/0143624406bt142oa

Qu, S.; Ma, F.; Ji, R.; Wang, D.; Yang, L. (2015) System design and energy performance of a solar heat pump heating system with dual-tank latent heat storage. Energy Build. 105, 294-301. https://doi.org/10.1016/j.enbuild.2015.07.040

Guion, J.; Sauzade, J.D.; Lau_gt, M. (1983) Critical examination and experimental determination of melting enthalpies and entropies of salt hydrates. Thermochim. Acta. 67, 167-179. https://doi.org/10.1016/0040-6031(83)80096-3

Yinping, Z.; Yi, J. (1999) A simple method the T -history method of determining the heat of fusion specific heat and thermal conductivity of phase-change materials. Meas. Sci. Technol. 10, 201-205. https://doi.org/10.1088/0957-0233/10/3/015

Cabeza, L.F.; Svensson, G.; Hiebler, S.; Mehling, H. (2003) Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material. Appl. Therm. Eng. 23, 1697-1704. https://doi.org/10.1016/S1359-4311(03)00107-8

Dannemand, M.; Fan, J.; Furbo, S.; Reddi, J. (2014) Validation of a CFD model simulating charge and discharge of a small heat storage test module based on a sodium acetate water mixture. Energy Procedia. 57, 2451-2460. https://doi.org/10.1016/j.egypro.2014.10.254

Davidson, J.H.; Quinnell, J.; Burch, J.; Zondag, H. a; Boer, R. De; Finck, C.; Cuypers, R.; Cabeza, L.F.; Heinz, A.; Jahnig, D.; Furbo, S.; Bertsch, F. Development of Space Heating and Domestic Hot Water Systems with Compact Thermal Energy Storage. in: Compact Therm. Energy Storage Mater. Dev. Syst. Integr., Report of the IEA SHC/ECES programme - Task 42/Annex 24. http://www.iea-shc.org/task42 [accessed April 2015].

Gutierrez, A.; Miró, L.; Gil, A.; Rodríguez-Aseguinolaza, J.; Barreneche, C.; Calvet, N.; Py, X.; Inés Fernández, A.; Grágeda, M.; Ushak, S.; Cabeza, L.F. (2016) Advances in the valorization of waste and by-product materials as thermal energy storage (TES) materials. Renew. Sustain. Energy Rev. 59, 763-783. https://doi.org/10.1016/j.rser.2015.12.071

(n.d.) GoodFellow. Material information. http://www.goodfellow. com/E/Gallium.html (accessed October 6, 2016).

(n.d.) Bolton Metal Product CO. http://www.boltonmetalproducts.com/Specifications.html (accessed October 6, 2016).

(n.d.) Cerro Alloys. http://www.csalloys.com/specifications. html (accessed October 6, 2016).

Roxas-Dimaano, M.N.; Watanabe, T. (2002) The capric and lauric acid mixture with chemical additives as latent heat storage materials for cooling application. Energy. 27, 869-888. https://doi.org/10.1016/S0360-5442(02)00024-5

Sari, A. (2005) Eutectic mixtures of some fatty acids for low temperature solar heating applications: Thermal properties and thermal reliability. Appl. Therm. Eng. 25, 2100-2107. https://doi.org/10.1016/j.applthermaleng.2005.01.010

Baran, G.; Sari, A. (2003) Phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as PCM in a latent heat storage system. Energy Convers. Manag. 44, 3227-3246. https://doi.org/10.1016/S0196-8904(03)00104-3

Sari, A. (2003) Thermal characteristics of a eutectic mixture of myristic and palmitic acids as phase change material for heating applications. Appl. Therm. Eng. 23, 1005-1017. https://doi.org/10.1016/S1359-4311(03)00031-0

Sari, A.; Kaygusuz, K. (2002) Thermal performance of a eutectic mixture of lauric and stearic acids as PCM encapsulated in the annulus of two concentric pipes. Sol. Energy. 72, 493-504. https://doi.org/10.1016/S0038-092X(02)00026-9

Sarı, A.; Alkan, C.; Özcan, A.N. (2015) Synthesis and characterization of micro/nano capsules of PMMA/capricstearic acid eutectic mixture for low temperature-thermal energy storage in buildings. Energy Build. 90, 106-113. https://doi.org/10.1016/j.enbuild.2015.01.013

Sari, A.; Kaygusuz, K. (2006) Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications. Chinese J. Chem. Eng. 14, 270-275. https://doi.org/10.1016/S1004-9541(06)60070-0

Kaygusuz, K.; Sari, A. (2006) Thermal Energy Storage Performance of Fatty Acids as a Phase Change Material. Energy Sources, Part A Recover. Util. Environ. Eff. 28, 105-116.

Li, J.H.; Zhang, G. en; Wang, J.Y. (1991) Investigation of a eutectic mixture of sodium acetate trihydrate and urea as latent heat storage. Sol. Energy. 47, 443-445. https://doi.org/10.1016/0038-092X(91)90112-A

Bales, C.; Gantenbein, P.; Jaenig, D.; Kerskes, H.; Summer, K.; Van Essen, M.; Weber, R. (2008) Laboratory Tests of Chemical Reactions and Prototype Sorption Storage Units. A Rep. IEA Sol. Heat. Cool. Program. - Task 32 Adv. Storage Concepts Sol. Low Energy Build. http://drxvzvm.iea-shc.org/data/sites/1/publications/task32-b4.pdf.

Bales, C.; Gantenbein, P.; Jaehnig, D.; Kerskes, H.; van Essen, M.; Weber, R.; Zondag, H. Chemical and Sorption Storage. in: EUROSUN 2008. 1st Int. Congr. Heating, Cool. Build., Lisbon, Portugal.

Grande, C. a. (2012) Advances in Pressure Swing Adsorption for Gas Separation. ISRN Chem. Eng. 2012, 1-13. https://doi.org/10.5402/2012/982934

Abedin, A.H.; Rosen, M.A. (2012) Closed and open thermochemical energy storage: Energy- and exergy-based comparisons. Energy. 41, 83-92. https://doi.org/10.1016/j.energy.2011.06.034

Semprini, S.; Lehmann, C.; Beckert, S.; Kolditz, O.; Gläser, R.; Kerskes, H.; Nagel, T. (2017) Numerical modelling of water sorption isotherms of zeolite 13XBF based on sparse experimental data sets for heat storage applications. Energy Convers. Manag. 150, 392-402. https://doi.org/10.1016/j.enconman.2017.08.033

Frazzica, A.; Freni, A. (2017) Adsorbent working pairs for solar thermal energy storage in buildings. Renew. Energy. 110, 87-94. https://doi.org/10.1016/j.renene.2016.09.047

Zettl, B.; Englmair, G.; Steinmaurer, G. (2014) Development of a revolving drum reactor for open-sorption heat storage processes. Appl. Therm. Eng. 70, 42-49. https://doi.org/10.1016/j.applthermaleng.2014.04.069

Wagner, W.; Janhig, W.; Isaksson, D.; Hausner, R. (2006) Modularer energiespeicher nach dem sorptionprinzip mit hoher energiedichte - Modestore, Technology report. 120. Lim, K.; Che, J.; Lee, J. (2017) Experimental study on adsorption characteristics of a water and silica-gel based thermal energy storage (TES) system. Appl. Therm. Eng. 110, 80-88.

Sapienza, A.; Velte, A.; Girnik, I.; Frazzica, A.; Fu_ldner, G.; Schnabel, L.; Aristov, Y. (2017) "Water - Silica Siogel" working pair for adsorption chillers: Adsorption equilibrium and dynamics. Renew. Energy. 110, 40-46. https://doi.org/10.1016/j.renene.2016.09.065

Deshmukh, H.; Maiya, M.P.; Srinivasa Murthy, S. (2017) Study of sorption based energy storage system with silica gel for heating application. Appl. Therm. Eng. 111, 1640-1646. https://doi.org/10.1016/j.applthermaleng.2016.07.069

Fernandes, M.S.; Brites, G.J.V.N.; Costa, J.J.; Gaspar, A.R.; Costa, V.A.F. (2016) A thermal energy storage system provided with an adsorption module - Dynamic modeling and viability study. Energy Convers. Manag. 126, 548-560. https://doi.org/10.1016/j.enconman.2016.08.032

Hauer, A. Adsorption Systems for Tes-Design and Demonstration Projects. in: Therm. Energy Storage Sustain. Energy Consum., Springer, Netherlands.: 409-427. PMid:1700137

Köll, R.; van Helden, W.; Engel, G.; Wagner, W.; Dang, B.; Jänchen, J.; Kerskes, H.; Badenhop, T.; Herzog, T. (2017) An experimental investigation of a realistic-scale seasonal solar adsorption storage system for buildings. Sol. Energy. 155, 388-397. https://doi.org/10.1016/j.solener.2017.06.043

Tatsidjodoung, P.; Le Pierrès, N.; Heintz, J.; Lagre, D.; Luo, L.; Durier, F. (2016) Experimental and numerical investigations of a zeolite 13X/water reactor for solar heat storage in buildings. Energy Convers. Manag. 108, 488-500. https://doi.org/10.1016/j.enconman.2015.11.011

Gaeini, M.; Zondag, H.A.; Rindt, C.C.M. (2016) Effect of kinetics on the thermal performance of a sorption heat storage reactor. Appl. Therm. Eng. 102, 520-531. https://doi.org/10.1016/j.applthermaleng.2016.03.055

Finck, C.; Henquet, E.; Van Soest, C.; Oversloot, H.; De Jong, A.J.; Cuypers, R.; Van T'Spijker, H. (2014) Experimental results of a 3 kWh thermochemical heat storage module for space heating application. Energy Procedia. 48, 320-326. https://doi.org/10.1016/j.egypro.2014.02.037

Vanhoudt, D.; Claessens, B.; De Ridder, F.; Reynders, G.; Cuypers, R.; Oversloot, H.; Finck, C.; van Soest, C.; de Jong, A.; Henquet, E.; van 't Spijker, H.; Koene, F.; Smeding, S.; Zondag, H. (2014) Energy-Hub for residential and commercial districts and transport. D3.2 Report on a combination of thermal storage techniques and components.

(n.d.) Energy-Hub for residential and commercial districts and transport - E-hub project (2010-2014) - Collaborative European project (7FP). http://www.e-hub.org/index.html (accessed June 9, 2016).

Helden, W. Van; Wagner, W.; Schubert, V.; Krampe-Zadler, C.; Kerskes, H.; Bertsch, F.; Mette, B.; Jänchen, J. (2014) Experimental tests on a solid sorption prototype for seasonal solar thermal storage. Eurotherm Semin. #99 Adv. Therm. Energy Storage. 1-8.

(n.d.) Compact thermal storage technologies - COMTES Project (2012-2016) - Collaborative European project (7FP). http://comtes-storage.eu/comtes-project/ (accessed June 9, 2016).

Johannes, K.; Kuznik, F.; Hubert, J.-L.; Durier, F.; Obrecht, C. (2015) Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl. Energy. 159, 80-86. https://doi.org/10.1016/j.apenergy.2015.08.109

N'Tsoukpoe, K.E.; Le Pierrès, N.; Luo, L. (2013) Experimentation of a LiBr-H2O absorption process for long-term solar thermal storage: Prototype design and first results. Energy. 53, 179-198. https://doi.org/10.1016/j.energy.2013.02.023

Weber, R.; Dorer, V. (2008) Long-term heat storage with NaOH. Vacuum. 82, 708-716. https://doi.org/10.1016/j.vacuum.2007.10.018

Daguenet-Frick, X.; Gantenbein, P.; Frank, E.; Fumey, B.; Weber, R.; Williamson, T. Seasonal Thermal Energy Storage with Aqueous Sodium Hydroxide. Reaction Zone development, manufacturing and first experimental assessments. in: EuroSun 2014. ISES Conf. Proc., Aix-les-Bain, France.

Daguenet-Frick, X.; Gantenbein, P.; Frank, E.; Fumey, B.; Weber, R.; Williamson, T. (2014) Reaction zone development for an aqueous sodium hydroxide seasonal thermal energy storage. Energy Procedia. 57, 2426-2435. https://doi.org/10.1016/j.egypro.2014.10.251

Fumey, B.; Weber, R.; Gantenbein, P.; Daguenet-Frick, X.; Williamson, T.; Dorer, V. (2014) Closed sorption heat storage based on aqueous sodium hydroxide. Energy Procedia. 48, 337-346. https://doi.org/10.1016/j.egypro.2014.02.039

Berg Johansen, J.; Furbo, S. (2015) COMTES - Deliverable 5.1 : Description of experimental systems. http://comtesstorage. eu/wordpress/wp-content/uploads/2015/06/D5-1-final-Description-of-experimental-systems.pdf.

Fumey, B.; Weber, R.; Baldini, L. (2017) Liquid sorption heat storage - A proof of concept based on lab measurements with a novel spiral fined heat and mass exchanger design. Appl. Energy. 200, 215-225. https://doi.org/10.1016/j.apenergy.2017.05.056

Quinnell, J.A.; Davidson, J.H. (2012) Mass transfer during sensible charging of a hybrid absorption/sensible storage tank. Energy Procedia. 30, 353-361. https://doi.org/10.1016/j.egypro.2012.11.042

Quinnell, J. a.; Davidson, J.H.; Burch, J. (2011) Liquid Calcium Chloride Solar Storage: Concept and Analysis. J. Sol. Energy Eng. 133, 11010. https://doi.org/10.1115/1.4003292

Richter, M.; Bouché, M.; Linder, M. (2016) Heat transformation based on CaCl 2 /H 2 O - Part A: Closed operation principle. 102, 615-621.

N'Tsoukpoe, K.E.; Le Pierrès, N.; Luo, L. (2012) Numerical dynamic simulation and analysis of a lithium bromide/water long-term solar heat storage system. Energy. 37, 346-358. https://doi.org/10.1016/j.energy.2011.11.020

Xu, S.M.; Huang, X.D.; Du, R. (2011) An investigation of the solar powered absorption refrigeration system with advanced energy storage technology. 85, 1794-1804.

Perier-Muzet, M.; Le Pierres, N. (2016) Modeling and analysis of energetic and exergetic efficiencies of a LiBr/H20 absorption heat storage system for solar space heating in buildings. Energy Effic. 9, 281-299. https://doi.org/10.1007/s12053-015-9362-2

Jonsson, S.; Kaarebring-Olsson, M.; Olsson, R. 2000, A chemical heat pump.

Bales, C.; Ayadi, O. (2009) Modelling of a Commercial Absorption Heat Pump with Integral Storage. Effstock 2009 - 11th Int. Conf. Energy Storage. Stockholm.

Hui, L.; Edem, N.K.; Nolwenn, L.P.; Luo, L. (2011) Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples. Energy Convers. Manag. 52, 2427-2436. https://doi.org/10.1016/j.enconman.2010.12.049

Scapino, L.; Zondag, H.A.; Bael, J. Van; Diriken, J.; Rindt, C.C.M. (2017) Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating. 76, 1314-1331.

Esaki, T.; Yasuda, M.; Kobayashi, N. (2017) Experimental evaluation of the heat output/input and coefficient of performance characteristics of a chemical heat pump in the heat upgrading cycle of CaCl 2 hydration. Energy Convers. Manag. 150, 365-374. https://doi.org/10.1016/j.enconman.2017.08.013

Bouché, M.; Richter, M.; Linder, M. (2016) Heat transformation based on CaCl 2 /H 2 O - Part B: Open operation principle. Appl. Therm. Eng. 102, 641-647. https://doi.org/10.1016/j.applthermaleng.2016.03.102

Mette, B.; Kerskes, H.; Dru_ck, H.; Mu_ller-Steinhagen, H. (2013) New highly efficient regeneration process for thermochemical energy storage. Appl. Energy. 109, 352-359. https://doi.org/10.1016/j.apenergy.2013.01.087

Cot-Gores, J.; Castell, A.; Cabeza, L.F. (2012) Thermochemical energy storage and conversion: A-stateof- the-art review of the experimental research under practical conditions. Renew. Sustain. Energy Rev. 16, 5207-5224. https://doi.org/10.1016/j.rser.2012.04.007

van Essen, V.M.; Zondag, H.A.; Gores, J.C.; Bleijendaal, L.P.J.; Bakker, M.; Schuitema, R.; van Helden, W.G.J.; He, Z.; Rindt, C.C.M. (2009) Characterization of MgSO4 Hydrate for Thermochemical Seasonal Heat Storage. J. Sol. Energy Eng. 131, 1-7. https://doi.org/10.1115/1.4000275

Zondag, H.; Kikkert, B.; Smeding, S.; Boer, R. de; Bakker, M. (2013) Prototype thermochemical heat storage with open reactor system. Appl. Energy. 109, 360-365. https://doi.org/10.1016/j.apenergy.2013.01.082

Barreneche, C.; Fernández, A.I.; Cabeza, L.F.; Cuypers, R. (2015) Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite. Appl. Energy. 137, 726-730. https://doi.org/10.1016/j.apenergy.2014.09.025

Ruiz-Agudo, E.; Martin-Ramos, J.D.; Rodriguez-Navarro, C. (2007) Mechanism and kinetics of dehydration of epsomite crystals formed in the presence of organic additives. J. Phys. Chem. B. 111, 41-52. https://doi.org/10.1021/jp064460b PMid:17201427

van Essen, V.M.M.; Zondag, H. a. a.; Schuitema, R.; van Helden, W.G.J.G.J.; Rindt, C.C.M.C.M.; Essen, V.M. Van; Zondag, H. a. a.; Schuitema, R.; Helden, W.G.J. Van; Rindt, C.C.M.C.M. (2008) Materials for thermochemical storage : characterization of magnesium sulfate. Proc. Eurosun. 4-9.

Okhrimenko, L.; Favergeon, L.; Johannes, K.; Kuznik, F.; Pijolat, M. (2017) Thermodynamic study of MgSO4· H2O system dehydration at low pressure in view of heat storage. Thermochim. Acta. 656, 135-143. https://doi.org/10.1016/j.tca.2017.08.015

Ferchaud, C.J.; Scherpenborg, R.A.A.; Zondag, H.A.; De Boer, R. (2014) Thermochemical seasonal solar heat storage in salt hydrates for residential applications - Influence of the water vapor pressure on the desorption kinetics of MgSO4·7H2O. Energy Procedia. 57, 2436-2440. https://doi.org/10.1016/j.egypro.2014.10.252

Kerskes, H.; Mette, B.; Bertsch, F.; Asenbeck, S.; Dru_ck, H. (2012) Chemical energy storage using reversible solid/ gas-reactions (CWS) - Results of the research project. Energy Procedia. 30, 294-304. https://doi.org/10.1016/j.egypro.2012.11.035

Willers, E.; Wanner, M.; Groll, M. (1999) Multi-hydride thermal wave device for simultaneous heating and cooling. J. Alloys Compd. 293, 915-918. https://doi.org/10.1016/S0925-8388(99)00440-5

Lammak, K.; Wongsuwan, W.; Kiatsiriroj, T. Investigation of modular chemical energy storage performance. in: Proc. Jt. Int. Conf. Energy Environ., Hua Hin, Thailand;

Zhang, P.; Wang, C.; Wang, R. (2007) Composite reactive block for heat transformer system and improvement of system performance. J. Chem. Eng. Japan. 40, 1275-1280. https://doi.org/10.1252/jcej.07WE148

Mauran, S.; Lahmidi, H.; Goetz, V. (2008) Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kWh by a solid/gas reaction. Sol. Energy. 82, 623-636. https://doi.org/10.1016/j.solener.2008.01.002

Wang, L.W.; Wang, R.Z.; Wu, J.Y.; Wang, K. (2004) Compound absorbent for adsorption ice maker on fishing boats. Int. J. Refrig. 27, 401-408. https://doi.org/10.1016/j.ijrefrig.2003.11.010

de Boer, R.; Haije, W.G.; Veldhuis, J.B.J.; Smeding, S.F. Solid-sorption cooling with integrated thermal storage: the SWEAT prototype. in: Proc. HPC 2004-3rd Int. Heat Powered Cycles Conf., Larnaca, Cyprus.

Wu, H.; Wang, S.; Zhu, D. (2007) Effects of impregnating variables on dynamic sorption characteristics and storage properties of composite sorbent for solar heat storage. Sol. Energy. 81, 864-871. https://doi.org/10.1016/j.solener.2006.11.013

Courbon, E.; D'Ans, P.; Permyakova, A.; Skrylnyk, O.; Steunou, N.; Degrez, M.; Frère, M. (2017) Further improvement of the synthesis of silica gel and CaCl2 composites: Enhancement of energy storage density and stability over cycles for solar heat storage coupled with space heating applications. Sol. Energy. 157, 532-541. https://doi.org/10.1016/j.solener.2017.08.034

Jabbari-Hichri, A.; Bennici, S.; Auroux, A. (2017) CaCl 2 -containing composites as thermochemical heat storage materials. Sol. Energy Mater. Sol. Cells. 172, 177-185. https://doi.org/10.1016/j.solmat.2017.07.037

Lizana, J.; Chacartegui, R.; Barrios-Padura, A.; Valverde, J.M. (2017) Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review. Appl. Energy. 203, 219-239. https://doi.org/10.1016/j.apenergy.2017.06.008

Valverde, J.M.; Castellanos, A. (2007) Random loose packing of cohesive granular materials. Europhys. Lett. 75, 985-991. https://doi.org/10.1209/epl/i2006-10208-4




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es