Materiales de Construcción, Vol 68, No 331 (2018)
Behaviour of recycled aggregate concrete under combined compression and shear stresses
https://doi.org/10.3989/mc.2018.06217
K. Liu
School of Civil Engineering, Harbin Institute of Technology, China http://orcid.org/0000-0002-8894-6890
J. Yan
School of Civil Engineering, Harbin Institute of Technology - Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education1, Harbin Institute of Technology - Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, China http://orcid.org/0000-0002-2781-9046
C. Zou
School of Civil Engineering, Harbin Institute of Technology - Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education1, Harbin Institute of Technology - Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, China http://orcid.org/0000-0001-9024-9560
Abstract
Keywords
References
. Hansen, T.C. (1986) Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Mater & Struct. 19[3], 201-246. https://doi.org/10.1007/BF02472036
Vázquez, E. (2013) Progress of recycling in the built environment: final report of the RILEM Technical Committee 217-PRE, Springer, Netherlands. https://doi.org/10.1007/978-94-007-4908-5
Choi, W.; Kim, S.; Yun, H. (2012) Flexural performance of reinforced recycled aggregate concrete beams. Mag Concrete Res. 64[9], 837-848. https://doi.org/10.1680/macr.11.00018
Silva, R.V.; Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater. 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
Tam, V.W.Y.; Wang, Z.; Tao, Z. (2014) Behaviour of recycled aggregate concrete filled stainless steel stub columns. Mater & Struct. 47[1-2], 293-310. https://doi.org/10.1617/s11527-013-0061-1
Khaloo, A.R.; Ahmad, S.H. (1988) Behavior of normal and high-strength concrete under combined compression-shear loading. ACI Mater J. 85[6], 551-559.
Bentz, E.C.; Vecchio, F.J.; Collins, M.R. (2006) Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Struct J. 103[4], 614-624.
Marcantonio, P.R.; Ozbolt, J.; Petrangeli, M. (2015) Rational approach to prediction of shear capacity of RC beam-column elements. ASCE J Struct Eng. 141[2] https://doi.org/10.1061/(ASCE)ST.1943-541X.0001037
Bresler, B.; Pister, K.S. (1958) Strength of concrete under combined stresses. ACI Journal Proceedings. ACI, US, 321-345.
Goode, C.D.; Helmy, M.A. (1967) The strength of concrete under combined shear and direct stress. Mag Concrete Res. 19[59], 105-112. https://doi.org/10.1680/macr.1967.19.59.105
Leon, A. (1935) Ueber die scherfestigkeit des betons. Beton und Eisen. 34[8], 130-135.
Le, F.; Dong, Y.; Zhang, L. Kang, G. (1996) Behavior of concrete under combined compression-shear loading. Journal of Fuzhou University (Natural Science). 24[S1], 30-35.
Yu, M.; Liu, F. (1988) Twin shear stress three parameter criterion and its corner model. China Civil Engineering Journal. 2[3], 90-95.
Li, J. (1997) Behavior of high-strength concrete under combined compression and shear loading. China Civil Engineering Journal. 30[3)], 74-80.
Ottosen, N.S. (1977) A failure criterion for concrete. ASCE Engineering Mechanics Division. 103[4], 527-535.
Folino, P.; Xargay, H. (2014) Recycled aggregate concrete–mechanical behavior under uniaxial and triaxial compression. Constr Build Mater. 56, 21-31. https://doi.org/10.1016/j.conbuildmat.2014.01.073
He, Z; Cao, W.; Zhang, J.; Wang, L. (2015) Multiaxial mechanical properties of plain recycled aggregate concrete. Mag Concrete Res. 67[8], 401-413. https://doi.org/10.1680/macr.14.00262
He, Z; Liu, G.; Cao, W.; Zhou, C.; Zhang, J. (2015) Strength criterion of plain recycled aggregate concrete under biaxial compression. Comput Concrete, 16[2], 209-222. https://doi.org/10.12989/cac.2015.16.2.209
GB/T 14685 (2011) Pebble and crushed stone for construction. Chinese National Standard.
GB/T 25177 (2010) Recycled coarse aggregate for concrete. Chinese National Standard.
JGJ 52 (2006) Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete. Chinese Industry Standard.
Abbas, A.; Fathifazl, G.; Fournier, B.; Isgor, O.B.; Zavadil, R.; Razaqpur, A.G.; Foo, S. (2009) Quantification of the residual mortar content in recycled concrete aggregates by image analysis. Mater Charact. 60[7], 716-728. https://doi.org/10.1016/j.matchar.2009.01.010
Fathifazl, G.; Abbas, A.; Razaqpur, A.G.; Isgor, O.B. (2009) New mixture proportioning method for concrete made with coarse recycled concrete aggregate. ASCE J Mater Civil Eng. 21[10], 601-611. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(601)
Knaack, A.M.; Kurama, Y.C. (2011) Design of normal strength concrete mixtures with recycled concrete aggregates. ASCE In Structures Congress. Las Vegas, United States, 3068-3079.
Surya, M.; Rao, V.V.L.K.; Lakshmy, P. (2015) Mechanical, durability, and time-dependent properties of recycled aggregate concrete with fly ash. ACI Mater J. 112[5], 653-661. https://doi.org/10.14359/51687853
GB/T 50152 (2012) Standard for test method of concrete structures. Chinese National Standard.
Guo, Z. (1997) Strength and deformation of concrete: Experimental basis and constitutive model. Beijing, China.
Kupfer, H.; Hilsdorf, H.K.; Rusch, H. (1969) Behavior of concrete under biaxial stresses. ACI In ACI Journal proceedings. US, 656-666.
GB/T 50081 (2002) Standard for test method of mechanical properties on ordinary concrete. Chinese National Standard.
Swamy, R.; Qureshi, S. (1974) An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement. Mater. Construcc. 7[3], 181-189. https://doi.org/10.1007/BF02473833
Gao, D.; Liu, J.; Li, Z. (1994) Theoretical model on shear strength of reinforced fiber concrete beams. Engineering Mechanics. 11[2], 130-137.
Luo, L.; Wang, Q. (2013) Shear strength formula for reinforced concrete beams without web reinforcements against size effect. Applied Mathematics and Mechanics. 34[6], 606-619.
Zhang, L.; Zhang, X.; Yan, G. (2007) Experimental research on the shearing capacity of recycled concrete beams without stirrups. Industrial Construction. 37[9], 57-61.
Fathifazl, G.; Abbas, A.; Razaqpur, A.G.; Foo, S. (2009) Shear strength of reinforced recycled concrete beams without stirrups. Mater & Struct. 61[7], 477-490.
Ni, T.; Sun, W.; Guo, Z. (2010) Experimental study on shear behavior of recycled concrete beams without stirrup. Sichuan Building Science, 36[1], 5-7.
GB/T 50010 (2010) Code for design of concrete structures. Chinese National Standard.
NP EN 1992-1-1 Eurocode 2 (2010) Design of concrete structures-Part 1: general rules and rules for buildings. British Standards Institution.
fib (2013) fib Model Code for Concrete Structures 2010. Ernst & Sohn GmbH & Co. KG, Germany.
ACI 318-11 (2011) Building code requirements for structural concrete and commentary. American Concrete Institute, USA.
Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

This work is licensed under a Creative Commons Attribution 4.0 International License.
Contact us materconstrucc@ietcc.csic.es
Technical support soporte.tecnico.revistas@csic.es