Materiales de Construcción, Vol 68, No 331 (2018)

Behaviour of recycled aggregate concrete under combined compression and shear stresses


https://doi.org/10.3989/mc.2018.06217

K. Liu
School of Civil Engineering, Harbin Institute of Technology, China
orcid http://orcid.org/0000-0002-8894-6890

J. Yan
School of Civil Engineering, Harbin Institute of Technology - Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education1, Harbin Institute of Technology - Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, China
orcid http://orcid.org/0000-0002-2781-9046

C. Zou
School of Civil Engineering, Harbin Institute of Technology - Key Lab of Structures Dynamic Behaviour and Control of the Ministry of Education1, Harbin Institute of Technology - Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, China
orcid http://orcid.org/0000-0001-9024-9560

Abstract


To investigate the behaviour of recycled aggregate concrete (RAC) under combined compression and shear stresses, 75 hollow cylinder specimens prepared with various replacement ratios of recycled coarse aggregate (RCA) were tested with a self-designed loading device. The results showed that the failure pattern was similar for RAC with different replacement ratios of RCA. The ultimate shear stress improved with an increasing axial compression ratio of less than 0.6 and declined after exceeding 0.6. A modified failure criterion for RAC with normal strength under combined compression and shear stresses was proposed. A new procedure to predict the shear strength for RAC beams without stirrups was developed based on the proposed failure criterion, showing a better correlation with the experimental results than the predictions calculated by GB50010, Eurocode 2, fib Model Code 2010 and ACI 318-11.

Keywords


Concrete; Waste treatment; Mechanical properties; Modelization

Full Text:


HTML PDF XML

References


. Hansen, T.C. (1986) Recycled aggregates and recycled aggregate concrete second state-of-the-art report developments 1945–1985. Mater & Struct. 19[3], 201-246. https://doi.org/10.1007/BF02472036

Vázquez, E. (2013) Progress of recycling in the built environment: final report of the RILEM Technical Committee 217-PRE, Springer, Netherlands. https://doi.org/10.1007/978-94-007-4908-5

Choi, W.; Kim, S.; Yun, H. (2012) Flexural performance of reinforced recycled aggregate concrete beams. Mag Concrete Res. 64[9], 837-848. https://doi.org/10.1680/macr.11.00018

Silva, R.V.; Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater. 65, 201-217. https://doi.org/10.1016/j.conbuildmat.2014.04.117

Tam, V.W.Y.; Wang, Z.; Tao, Z. (2014) Behaviour of recycled aggregate concrete filled stainless steel stub columns. Mater & Struct. 47[1-2], 293-310. https://doi.org/10.1617/s11527-013-0061-1

Khaloo, A.R.; Ahmad, S.H. (1988) Behavior of normal and high-strength concrete under combined compression-shear loading. ACI Mater J. 85[6], 551-559.

Bentz, E.C.; Vecchio, F.J.; Collins, M.R. (2006) Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Struct J. 103[4], 614-624.

Marcantonio, P.R.; Ozbolt, J.; Petrangeli, M. (2015) Rational approach to prediction of shear capacity of RC beam-column elements. ASCE J Struct Eng. 141[2] https://doi.org/10.1061/(ASCE)ST.1943-541X.0001037

Bresler, B.; Pister, K.S. (1958) Strength of concrete under combined stresses. ACI Journal Proceedings. ACI, US, 321-345.

Goode, C.D.; Helmy, M.A. (1967) The strength of concrete under combined shear and direct stress. Mag Concrete Res. 19[59], 105-112. https://doi.org/10.1680/macr.1967.19.59.105

Leon, A. (1935) Ueber die scherfestigkeit des betons. Beton und Eisen. 34[8], 130-135.

Le, F.; Dong, Y.; Zhang, L. Kang, G. (1996) Behavior of concrete under combined compression-shear loading. Journal of Fuzhou University (Natural Science). 24[S1], 30-35.

Yu, M.; Liu, F. (1988) Twin shear stress three parameter criterion and its corner model. China Civil Engineering Journal. 2[3], 90-95.

Li, J. (1997) Behavior of high-strength concrete under combined compression and shear loading. China Civil Engineering Journal. 30[3)], 74-80.

Ottosen, N.S. (1977) A failure criterion for concrete. ASCE Engineering Mechanics Division. 103[4], 527-535.

Folino, P.; Xargay, H. (2014) Recycled aggregate concrete–mechanical behavior under uniaxial and triaxial compression. Constr Build Mater. 56, 21-31. https://doi.org/10.1016/j.conbuildmat.2014.01.073

He, Z; Cao, W.; Zhang, J.; Wang, L. (2015) Multiaxial mechanical properties of plain recycled aggregate concrete. Mag Concrete Res. 67[8], 401-413. https://doi.org/10.1680/macr.14.00262

He, Z; Liu, G.; Cao, W.; Zhou, C.; Zhang, J. (2015) Strength criterion of plain recycled aggregate concrete under biaxial compression. Comput Concrete, 16[2], 209-222. https://doi.org/10.12989/cac.2015.16.2.209

GB/T 14685 (2011) Pebble and crushed stone for construction. Chinese National Standard.

GB/T 25177 (2010) Recycled coarse aggregate for concrete. Chinese National Standard.

JGJ 52 (2006) Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete. Chinese Industry Standard.

Abbas, A.; Fathifazl, G.; Fournier, B.; Isgor, O.B.; Zavadil, R.; Razaqpur, A.G.; Foo, S. (2009) Quantification of the residual mortar content in recycled concrete aggregates by image analysis. Mater Charact. 60[7], 716-728. https://doi.org/10.1016/j.matchar.2009.01.010

Fathifazl, G.; Abbas, A.; Razaqpur, A.G.; Isgor, O.B. (2009) New mixture proportioning method for concrete made with coarse recycled concrete aggregate. ASCE J Mater Civil Eng. 21[10], 601-611. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:10(601)

Knaack, A.M.; Kurama, Y.C. (2011) Design of normal strength concrete mixtures with recycled concrete aggregates. ASCE In Structures Congress. Las Vegas, United States, 3068-3079.

Surya, M.; Rao, V.V.L.K.; Lakshmy, P. (2015) Mechanical, durability, and time-dependent properties of recycled aggregate concrete with fly ash. ACI Mater J. 112[5], 653-661. https://doi.org/10.14359/51687853

GB/T 50152 (2012) Standard for test method of concrete structures. Chinese National Standard.

Guo, Z. (1997) Strength and deformation of concrete: Experimental basis and constitutive model. Beijing, China.

Kupfer, H.; Hilsdorf, H.K.; Rusch, H. (1969) Behavior of concrete under biaxial stresses. ACI In ACI Journal proceedings. US, 656-666.

GB/T 50081 (2002) Standard for test method of mechanical properties on ordinary concrete. Chinese National Standard.

Swamy, R.; Qureshi, S. (1974) An ultimate shear strength theory for reinforced concrete T-beams without web reinforcement. Mater. Construcc. 7[3], 181-189. https://doi.org/10.1007/BF02473833

Gao, D.; Liu, J.; Li, Z. (1994) Theoretical model on shear strength of reinforced fiber concrete beams. Engineering Mechanics. 11[2], 130-137.

Luo, L.; Wang, Q. (2013) Shear strength formula for reinforced concrete beams without web reinforcements against size effect. Applied Mathematics and Mechanics. 34[6], 606-619.

Zhang, L.; Zhang, X.; Yan, G. (2007) Experimental research on the shearing capacity of recycled concrete beams without stirrups. Industrial Construction. 37[9], 57-61.

Fathifazl, G.; Abbas, A.; Razaqpur, A.G.; Foo, S. (2009) Shear strength of reinforced recycled concrete beams without stirrups. Mater & Struct. 61[7], 477-490.

Ni, T.; Sun, W.; Guo, Z. (2010) Experimental study on shear behavior of recycled concrete beams without stirrup. Sichuan Building Science, 36[1], 5-7.

GB/T 50010 (2010) Code for design of concrete structures. Chinese National Standard.

NP EN 1992-1-1 Eurocode 2 (2010) Design of concrete structures-Part 1: general rules and rules for buildings. British Standards Institution.

fib (2013) fib Model Code for Concrete Structures 2010. Ernst & Sohn GmbH & Co. KG, Germany.

ACI 318-11 (2011) Building code requirements for structural concrete and commentary. American Concrete Institute, USA.




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es