Materiales de Construcción, Vol 68, No 331 (2018)

Incorporating graphene oxide into lime solution: A study of flocculation and corresponding improvement


https://doi.org/10.3989/mc.2018.05217

G. J. Jing
School of Materials Science & Engineering, University of Jinan, China
orcid http://orcid.org/0000-0002-5755-4341

Z. M. Ye
School of Materials Science & Engineering, University of Jinan, China
orcid http://orcid.org/0000-0002-2638-9750

X. L. Lu
School of Materials Science & Engineering, University of Jinan, China
orcid http://orcid.org/0000-0002-0953-9219

J. M. Wu
School of Materials Science & Engineering, University of Jinan, China
orcid http://orcid.org/0000-0002-8005-0977

S. X. Wang
School of Materials Science & Engineering, University of Jinan, China
orcid http://orcid.org/0000-0003-4995-7324

X. Cheng
Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, China
orcid http://orcid.org/0000-0002-6649-7959

Abstract


The dispersion behavior of graphene oxide in cement matrix is one important factor in enhancing cement performance. In this work, we investigated the dispersion of graphene oxide in cement by simulating alkaline environment with a solution of calcium hydroxide and studied the corresponding strategy of improving dispersion. The obtained results showed that graphene oxide would flocculate even if calcium hydroxide concentration was very low, which might be the main reason of the unstable properties of the graphene oxide-doped cement. In addition, we discovered that, compared to -OH group, the -COOH group and the long chain of polycarboxylate-based superplasticizer were more effective in delaying the flocculation of graphene oxide. Finally, we proposed a dispersion mechanism of polycarboxylate-based superplasticizer. The study provides inspiration for the design of graphene oxide-doped cement materials.

Keywords


Portland cement; Reaction; Lime; Dispersion; Superplasticizers

Full Text:


HTML PDF XML

References


Gong K.; Pan Z.; Korayem A.H.; Qiu L.; Li D.; Collins F.; Wang C.M.; Duan W.H. (2015) Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 27, A4014010. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125

Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C. (2015) Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Comp. 58, 140–147. https://doi.org/10.1016/j.cemconcomp.2015.02.001

Mohammed, A.; Sanjayan, J.G.; Duan, W.H.; Nazari, A. (2015) Incorporating graphene oxide in cement composites: a study of transport properties. Constr. Build. Mater. 84(1), 341–347. https://doi.org/10.1016/j.conbuildmat.2015.01.083

Rhee, I.; Lee, J.S.; Kim, Y.A.; Jin, H.K.; Ji, H.K. (2016) Electrically conductive cement mortar: incorporating rice husk-derived high-surface-area graphene. Constr. Build. Mater. 125, 632–642. https://doi.org/10.1016/j.conbuildmat.2016.08.089

Li, X.; Korayem, A.H.; Li, C.; Liu, Y.; He, H.; Sanjayan, J.G.; Duan, W.H. (2016) Incorporation of graphene oxide and silica fume into cement paste: A study of dispersion and compressive strength. Constr. Build. Mater. 123, 327–335. https://doi.org/10.1016/j.conbuildmat.2016.07.022

Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q. (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022

Wang, B.; Jiang, R.; Wu, Z. (2016) Investigation of the Mechanical Properties and Microstructure of Graphene Nanoplatelet-Cement Composite. Nanomaterials. 6, 200. https://doi.org/10.3390/nano6110200 PMid:28335328 PMCid:PMC5245736

Metaxa, Z.S. (2015) Polycarboxylate based superplasticizers as dispersant agents for exfoliated graphene nanoplatelets reinforcing cement based materials. J. Eng. Sci. and Techno. Rev. 8(5), 1–5.

Sharma, S.; Kothiyal, N.C. (2015) Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Constr. Build. Mater. 115, 256–268. https://doi.org/10.1016/j.conbuildmat.2016.04.019

Hummers, W.S.; Offeman, R.E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339. https://doi.org/10.1021/ja01539a017

Lu, Z.; Hou, D.; Meng, L.; Sun, G.; Lu C.; Li, Z. (2015) Mechanism of cement paste reinforced by graphene oxide/carbon nanotubes composites with enhanced mechani cal properties. RSC Adv. 5, 100598–100605. https://doi.org/10.1039/C5RA18602A

Chen, W.; Yan, L. (2010) Preparation of graphene by a low-temperature thermal reduction at atmosphere. Nanoscale. 2(4), 559–563. https://doi.org/10.1039/b9nr00191c PMid:20644759

Kothiyal, N. C.; Sharma, S.; Mahajan, S.; Sethi, S. (2016) Characterization of reactive graphene oxide synthesized from ball – milled graphite: its enhanced reinforcing effects on cement nanocomposites. J. Adhes. Sci. Technol. 30(9), 915–933. https://doi.org/10.1080/01694243.2015.1129214

Lu, L.; Ouyang, D. (2017) Properties of cement mortar and ultra-high strength concrete incorporating graphene oxide nanosheets. Nanomaterials. 7(7), 187. https://doi.org/10.3390/nano7070187 PMid:28726750 PMCid:PMC5535253

Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen ST. (2015) Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20(21), 6592–6594. https://doi.org/10.1021/cm801932u

Yang, H.; Monasterio, M.; Cui, H.; Han, N. (2017) Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Composites Part A. https://doi.org/10.1016/j.compositesa.2017.07.022

Lu, Z.; Hanif, A.; Ning, C.; Shao, H.; Yin, R.; Li, Z. (2017) Steric stabilization of graphene oxide in alkaline cementitious solutions: mechanical enhancement of cement composite. Mater. Des. 127, 154–161. https://doi.org/10.1016/j.matdes.2017.04.083

Li, X.; Lu, Z.; Chuah, S.; Li, W.; Liu, Y.; Duan, W. H.; Li Z. (2017) Effects of graphene oxide aggregates on hydration degree, sorptivity, and tensile splitting strength of cement paste. Composites Part A. 100, 1–8. https://doi.org/10.1016/j.compositesa.2017.05.002

Wang, M.; Wang, R.; Yao, H.; Wang, Z.; Zheng, S. (2016) Adsorption characteristics of graphene oxide nanosheets on cement. RSC Adv. 6(68).

Zhao, L.; Guo, X.; Ge, C.; Li, Q.; Guo, L.; Shu, X.; Liu, J. (2016) Investigation of the effectiveness of PC@GO on the reinforcement for cement composites. Constr. Build. Mater. 113, 470–478. https://doi.org/10.1016/j.conbuildmat.2016.03.090

Zhou, C.; Li, F.; Hu, J.; Ren, M.; Wei, J.; Yu, Q. (2017) Enhanced mechanical properties of cement paste by hybrid graphene oxide/carbon nanotubes. Constr. Build. Mater. 134, 336–345. https://doi.org/10.1016/j.conbuildmat.2016.12.147

Luo, Z.; Lu, Y.; Somers, L. A.; Johnson, A. T. (2009) High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131(3), 898. https://doi.org/10.1021/ja807934n PMid:19128004

Everett; Hugh, D. (1988) Basic Principles of Colloid Science, Royal Society of Chemistry, London, (1988).

Park, S.; Lee, K.S.; Bozoklu, G.; Cai, W.; Nguyen, S.T.; Ruoff, R.S. (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano. 2(3), 572–578. https://doi.org/10.1021/nn700349a PMid:19206584

Wang, M.; Wang, R.; Yao, H.; Farhan, S.; Zheng. S.; Du C. (2016) Study on the three dimensional mechanism of graphene oxide nanosheets modified cement. Constr. Build. Mater. 126, 730–739. https://doi.org/10.1016/j.conbuildmat.2016.09.092




Copyright (c) 2018 Consejo Superior de Investigaciones Científicas (CSIC)

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Contact us materconstrucc@ietcc.csic.es

Technical support soporte.tecnico.revistas@csic.es